Skip to main content

Biomechanics of Additive Surgery: Intracorneal Rings

  • Chapter
  • First Online:
Corneal Biomechanics and Refractive Surgery

Abstract

The aim of supervision relies on a thorough understanding of corneal biomechanics in order to predict refractive surgery outcome. The study of changes in stress and elasticity after corneal reshaping by additive or subtractive surgical techniques are very important in order to obtain reliable procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Guarnieri, P.M. Pinsky, J. Shimmick, Computational investigation of the biomechanical response of the cornea to lamellar procedures. Invest. Ophthalmol. Vis. Sci. 42, S603 (2001)

    Google Scholar 

  2. T.A. Silvestrini, M.L. Mathis, B.E. Loomas, T.E. Burris, A geometric model to predict the change in corneal curvature from the intrastromal corneal ring (ICR). Invest. Ophthalmol. Vis. Sci. 35(suppl), 2023 (1994)

    Google Scholar 

  3. P.M. Pinsky, D.V. Datye, T.A. Silvestrini, Numerical simulation of topographical alterations in the cornea after ICR (intrastromal corneal ring) placement. Invest. Ophthalmol. Vis. Sci. 36(suppl), S309 (1995)

    Google Scholar 

  4. F.A. Guarnieri, A. Cardona, 3d viscoelastic nonlinear incompressible finite element in large strain of the cornea. application in refractive surgery, in Articles in CD-ROM Fourth World Congress of Computational Mechanics (1998)

    Google Scholar 

  5. J. Colin, S. Velou, Implantation of intacs and a refractive intraocular lens to correct keratoconus. J. Cataract Refract. Surg. 29(4), 832–834 (2003)

    Article  PubMed  Google Scholar 

  6. P.A. Asbell, Ó.m.Ó. Ugakhan, Long-term follow-up of intacs from a single center. J. Cataract Refract. Surg. 27(9), 1456–1468 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. J. Colin, B. Cochener, G. Savary et al., Correcting keratoconus with intra-corneal rings. J. Cataract Refract. Surg. 26, 1117–1122 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. D. Siganos, P. Ferrara, K. Chatzinikolas et al., Ferrara intrastromal corneal rings for the correction of keratoconus. J. Cataract Refract. Surg. 28, 1947–1951 (2002)

    Article  PubMed  Google Scholar 

  9. J. Colin, B. Cochener, G. Savary et al., Intacs inserts for treating keratoconus; one-year results. Ophthalmology 108, 1409–1414 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. C.S. Siganos, G.D. Kymionis, N. Kartakis et al., Management of keratoconus with Intacs. Am. J. Ophthalmol. 135, 64–70 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. K.K. Assil, A.M. Barrett, B.D. Fouraker, D.J. Schanzlin, One-year results of the intrastromal corneal ring in nonfunctional human eyes; the Intrastromal Corneal Ring Study Group. Arch. Ophthalmol. 113, 159–167 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. C.S. Siganos, G.D. Kymionis, N. Astyrakakis et al., Management of corneal ectasia after laser in situ keratomileusis with INTACS. J. Refract. Surg. 18, 43–46 (2002)

    PubMed  Google Scholar 

  13. F.B.D. Silva, E.A.F. Alves, P.F.A. Cunha, Utilizagao do Anel de Ferrara na estabilizagdo e corregao da ectasia corneana pós PRK. Arq. Bras. Oftalmol. 63, 215–218 (2000)

    Article  Google Scholar 

  14. J. Ruckhofer, J. Stoiber, M.D. Twa et al., Correction of astigmatism with short arc-length intrastromal corneal ring segments: preliminary results. Ophthalmology 110, 516–524 (2003)

    Article  PubMed  Google Scholar 

  15. W. Nose, R.A. Neves, T.E. Burris et al., Intrastromal corneal ring: 12-month sighted myopic eyes. J. Refract. Surg. 12, 20–28 (1996)

    CAS  PubMed  Google Scholar 

  16. D.J. Schanzlin, P.A. Asbell, T.E. Burris, D.S. Durrie, The intrastromal ring segments; phase II results for the correction of myopia. Ophthalmology 104, 1067–1078 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. D.K. Holmes-Higgin, T.E. Burris, J.A. Lapidus, M.R. Greenlick, Risk factors for self-reported visual symptoms with Intacs inserts for myopia. Ophthalmology 109, 46–56 (2002)

    Article  PubMed  Google Scholar 

  18. P.A. Asbell, O. Ucakhan, R.L. Abbott et al., Intrastromal corneal ring segments: reversibility of refractive effect. J. Refract. Surg. 17, 25–31 (2001)

    CAS  PubMed  Google Scholar 

  19. J.I. Barraquer, Modification of refraction by means of intracorneal inclusions. Int. Ophthalmol. Clin. 6(1), 53–78 (1966)

    Article  CAS  PubMed  Google Scholar 

  20. J.L. Barraquer, Cirugia Refractiva de La Cornea (Instituto Barraquer de America, Bogota, Tomo I, 1989)

    Google Scholar 

  21. J.I. Barraquer, Modification of refraction by means of intracorneal inclusion. Int. Ophthamol. Clin. 6, 53 (1966)

    Article  CAS  Google Scholar 

  22. P. Ferrara, L. Torquetti, Clinical outcomes after implantation of a new intrastromal ring with a 210-degree of arch. J. Cataract Refract. Surg. 35, 1604–1608 (2009)

    Article  PubMed  Google Scholar 

  23. L. Torquetti, P. Ferrara, Long term follow-up of intrastromal corneal ring segments in keratoconus. J. Cataract Refract. Surg. 35, 1768–1773 (2009)

    Article  PubMed  Google Scholar 

  24. P. Ferrara, L. Torquetti, Ferrara Ring, An Overview. Cataract and Refractive Surgery Today Ü Europe (2009)

    Google Scholar 

  25. A. Ertan, G. Kamburoglu, Ü. Akgun, Comparison of outcomes of 2 channel sizes for intrastromal ring segment implantation with a femtosecond laser in eyes with keratoconus. J. Cataract Refract. Surg. 33, 648–653 (2007)

    Article  PubMed  Google Scholar 

  26. A. Ertan, G. Kamburoglu, M. Bahadir, Intacs insertion with the femtosecond laser for the management of keratoconus: one-year results. J. Cataract Refract. Surg. 32, 2039–2042 (2006)

    Article  PubMed  Google Scholar 

  27. Y.S. Rabinowitz, X. Li, T.S. Ignacio, E. Maguen, Intacs inserts using the femtosecond laser compared to the mechanical spreader in the treatment of keratoconus. J. Refract. Surg. 22, 764–771 (2006)

    PubMed  Google Scholar 

  28. M.H. Shabayek, J.L. Alió, Intrastromal corneal ring segment implantation by femtosecond laser for keratoconus correction. Ophthalmology 114, 1643–1652 (2007)

    Article  PubMed  Google Scholar 

  29. P.M. Pinsky, D. van der Heide, D. Chernyak, Computational modeling of mechanical anisot-317 ropy in the cornea and sclera. J. Cataract Refract. Surg. 31(1), 136–145 (2005)

    Article  PubMed  Google Scholar 

  30. L. Torquetti, P. Ferrara, Intrastromal corneal ring segments implantation in post-refractive surgery ectasia. J. Cataract Refract. Surg. 36, 986–990 (2010)

    Article  PubMed  Google Scholar 

  31. P. Ferrara, L. Torquetti, Corneal endothelial profile after Ferrara ring implantation. J. Emmetropia 1, 29–32 (2010)

    Google Scholar 

  32. W.M. Bourne, L.R. Nelson, D.O. Hodge, Continued endothelial cell loss ten years after implantation. Ophthalmology 101, 1014–1023 (1994)

    Article  CAS  PubMed  Google Scholar 

  33. R.A. Laing, M.M. Sandstrom, A.R. Berrospi, H.M. Leibowitz, The human corneal endothelium in keratoconus: a specular microscopic study. Arch. Ophthalmol. 97, 1867–1869 (1979)

    Article  CAS  PubMed  Google Scholar 

  34. Langenbucher A, Nguyen NX, and Seitz B. Predictive donor factors for chronic endothelial cell loss after nonmechanical penetrating keratoplasty in a regression model. GraefeSs Arch Clin Exp Ophtalmol, 2003.

    Google Scholar 

  35. Azar RG, Holdbrook MJ, Lemp M, and Edelhauser HF; KeraVision Stduy Group. Two-year corneal endothelial cell assessment following INTACS implantation. J Refract Surg, 2001.

    Google Scholar 

  36. G Wollensak, Spoerl E, Wilsch M, and Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg 2003;29:1786–1790.

    Google Scholar 

  37. Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, and Jurkunas UV. Pineda R 2nd. Pavan-Langston D, Dana R, Topical bevacizumab in the treatment of corneal neovascularization, 2009.

    Google Scholar 

  38. Mackenzie SE, Tucker WR, and Poole TR. Bevacizumab (avastin) for corneal neovascularization-corneal light shield soaked application. Cornea, 2009.

    Google Scholar 

  39. Chen WL, Lin CT, Lin NT, Tu IH, Li JW, Chow LP, Liu KR, and Hu FR. Subconjunctival injection of bevacizumab (avastin) on corneal neovascular- ization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci, 2009.

    Google Scholar 

  40. Doctor PP, Bhat PV, and Foster CS. Subconjunctival bevacizumab for corneal neovascularization. Cornea, 2008.

    Google Scholar 

  41. Miranda D, Sartori M, Francesconi C, Allemann N, Ferrara P, and Campos M. Ferrara intrastromal corneal ring segments for severe keratoconus. J Refract Surg, 2003.

    Google Scholar 

  42. T. Seiler, M. Matallana, S. Sendler, T. Bende, Does bowman’s layer determine the biomechanical properties of the cornea? Refract. Corneal Surg. 8(2), 139–142 (1992)

    CAS  PubMed  Google Scholar 

  43. J. 0. Hjortdal and N. Ehlers. Extensibility of the normo-hydrated human cornea. Acta Ophthalmol. Scand., 73(1):12–17, 1995.

    Google Scholar 

  44. B. Jue, D. Maurice, The mechanical properties of the rabbit and human cornea. J Biomechanics 19(10), 847–854 (1986)

    Article  CAS  Google Scholar 

  45. R. Aufreiter, R. Mallinger, W. Radner, M. Zehetmayer, Interlacing and cross-angle distribution of collagen lamellae in the human cornea. Cornea 17(5), 537–543 (1998)

    Article  PubMed  Google Scholar 

  46. M.K. Smolek, Interlamellar cohesive strength in the vertical meridian of human eye bank corneas. Invest. Ophthalmol. Vis. Sci. 34(10), 2962–2969 (1993)

    CAS  PubMed  Google Scholar 

  47. J. Gloster, E. S. Perkins, and M-L Pommier. Extensibility of strips of sclera and cornea. British. J. Ophthal., 41:103–110, 1957.

    Google Scholar 

  48. A. Arciniegas and L. E. Amaya. Asociación de la queratotomía radial y la circular para la corrección de ametropias. Enfoque biomecánico, chapter XXII. Soc. Am. de Oftalmología, Bogotá, 1981.

    Google Scholar 

  49. I.S. Nash, P.R. Greene, C.S. Foster, Comparison of mechanical properties of keratoconus and normal corneas. Exp. Eye Res. 35, 413–423 (1982)

    Article  CAS  PubMed  Google Scholar 

  50. D.A. Hoeltzel, P. Altman, K.A. Buzard, K. Choe, Strip extensiometry for comparison of the mechanical response of bovine, rabbit and human corneas. J Biomech Engng 114(2), 202–215 (1992)

    Article  CAS  Google Scholar 

  51. S.L.-Y. Woo, A.S. Kobayashi, W.A. Schlegel, C. Lawrence, Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 14, 29–39 (1972)

    Article  CAS  PubMed  Google Scholar 

  52. M.R. Bryant, P.J. McDonnell, Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Engng 118, 473–481 (1996)

    Article  CAS  Google Scholar 

  53. A. Nevyas-Wallace. Pattern recognition in subclinical and clinical kerato- conus using elevation-based topography. In Abstracts in Pre-AAO. ISRS, page 98, 1996.

    Google Scholar 

  54. J.L. Battaglioli, R.D. Kamm, Measurements of the compressive prop- erties of scleral tissue. Invest. Ophthalmol. Vis. Sci. 114(2), 202–215 (1992)

    Google Scholar 

  55. K.A. Buzard, J.F. Ronk, M.H. Friedlander, D.J. Tepper, D.A. Hoeltzel, K. Choe, Quantitative measurement of wound spreading in radial keratotomy. Refract. Corneal Surg. 8(3), 217–223 (1992)

    CAS  PubMed  Google Scholar 

  56. J. 0. Hjortdal and N. Ehlers. Acute tissue deformation of the human cornea after radial keratotomy. J. Refract. Surg., 12(3):391–400, 1996.

    Google Scholar 

  57. W.M. Petroll, P. Roy, C.J. Chuong, B. Hall, H.D. Cavanagh, J.V. Jester, Measurement of surgically induced corneal deformations us- ing three-dimensional confocal microscopy. Cornea 15(2), 154–164 (1996)

    Article  CAS  PubMed  Google Scholar 

  58. R.P. Vito, P.H. Carnell, Finite element method based mechanical models of the cornea for pressure and indenter loading. Refract. Corneal Surg. 8(2), 146–151 (1992)

    CAS  PubMed  Google Scholar 

  59. S.C. Velinsky, M.R. Bryant, On the computer-aided and optimal design of keratorefractive surgery. Refract. Corneal Surg. 8(2), 173–182 (1992)

    CAS  PubMed  Google Scholar 

  60. F. A. Guarnieri. Modelo biomecánico del ojo para diseño asistido por computadora de la cirugía refractiva. Proyecto de grado de bioingeniería, Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina, 1993.

    Google Scholar 

  61. K. D. Hanna, F. E. Jouve, and G. O. Waring(III). Computer simulation of arcuate keratotomy for astigmatism. Refract. Corneal Surg., 8(2):152–163, 1992.

    Google Scholar 

  62. W. O. Wray, E. D. Best, and L. Y. Cheng. A mechanical model for radial keratotomy: Toward a predictive capability. J. Biomech. Engng., 116(1), 1994.

    Google Scholar 

  63. P.M. Pinsky, D.V. Datye, Numerical modeling of radial, astigmatic and hexagonal keratotomy. Refract. Corneal Surg. 8(2), 164–172 (1992)

    CAS  PubMed  Google Scholar 

  64. K.M. Meek, S.J. Tuft, Y. Huang, P.S. Gill, S. Hayes, R.H. Newton, A.J. Bron, Changes in collagen orientation and distribution in keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 46, 1948–1956 (2005)

    Article  PubMed  Google Scholar 

  65. A.J. Quantock, C. Boote, V. Siegler, K.M. Meek, Collagen organization in the secondary chick cornea during development. Invest. Ophthalmol. Vis. Sci. 44, 130–136 (2003)

    Article  PubMed  Google Scholar 

  66. L.J. Müller, E. Pels, G.F.J.M. Vrensen, The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br. J. Ophthalmol. 85, 437–443 (2001)

    Article  PubMed Central  PubMed  Google Scholar 

  67. A.S. Kobayashi, L.G. Staberg, W.A. Schlegel, Viscoelastic properties of human cornea. Exp. Mech. 13(12), 497–503 (1973)

    Article  Google Scholar 

  68. M.K. Smolek, Holographic interferometry of intact and radially incised human eye-bank corneas. J. Cataract Refract. Surg. 20, 277–286 (1994)

    Article  CAS  PubMed  Google Scholar 

  69. K.A. Buzard, B.R. Fundingsland, Assessment of corneal wound healing by interactive topography. J. Refract. Surg. 14, 53–60 (1998)

    CAS  PubMed  Google Scholar 

  70. K.D. Hanna, F.E. Jouve, G.O. Waring III, Preliminary computer simulation of the effects of radial keratotomy. Arch. Ophthalmol. 107, 911–918 (1989)

    Article  CAS  PubMed  Google Scholar 

  71. M.F. Beatty, Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues- with examples. Appl. Mech. Rev. 40, 1699–1734 (1987)

    Article  Google Scholar 

  72. Y.C. Fung, Biomechanics. Mechanical Properties of Living Tissues, 2nd edn. (Springer, New York, 1993)

    Google Scholar 

  73. A.D. Drozdov, Finite Elasticity and Viscoelasticity. A Course in the Nonlinear Mechanics of Solids (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  74. F. A. Guarnieri. Modelo Biomecánico del Ojo para Diseño Asistido por Computadora de la Cirugía Refractiva. PhD dissertation, FICH-INTEC, Universidad Nacional del Litoral, Santa Fe, Argentina, 1999.

    Google Scholar 

  75. P.M. Pinsky, D. van der Heide, D. Chernyak, Computational modeling of mechanical anisot-317 ropy in the cornea and sclera. J. Cataract Refract. Surg. 31(1), 136–145 (2005)

    Google Scholar 

Download references

Acknowledgments

This work was partly funded by Ferrara Rings, Inc. (Belo Horizonte, Brazil). I would like to thank Dr. Paulo Ferrara for his support and collaboration of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio A. Guarnieri Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guarnieri, F.A., Ferrara, P., Torquetti, L. (2015). Biomechanics of Additive Surgery: Intracorneal Rings. In: Guarnieri, F. (eds) Corneal Biomechanics and Refractive Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1767-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1767-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1766-2

  • Online ISBN: 978-1-4939-1767-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics