Corneal Biomechanics

Chapter

Abstract

The cornea is the first and most powerful refractive surface of the optical system of the eye.

Keywords

Permeability Anisotropy Hydration Mercury Retina 

References

  1. 1.
    R. Moses, W. Hart(h), Fisiologia del Ojo. Aplicacion clinica. (Adler. Panamericana, Bs.As. 1988)Google Scholar
  2. 2.
    R. Berne, M. Levy, Fisiologia. (Panamericana, Bs. As., 1986)Google Scholar
  3. 3.
    D. Schanzlin, J. Robin, Corneal Topography. Measuring and Modifying the Cornea (Springer, New York, 1992)CrossRefGoogle Scholar
  4. 4.
    J. Gloster, E.S. Perkins, M.-L. Pommier, Extensibility of strips of sclera and cornea. British. J. Ophthal. 41, 103–110 (1957)CrossRefGoogle Scholar
  5. 5.
    S.L.-Y. Woo, A.S. Kobayashi, W.A. Schlegel, C. Lawrence, Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 14, 29–39 (1972)PubMedCrossRefGoogle Scholar
  6. 6.
    S.L.-Y. Woo, A.S. Kobayashi, W.A. Schlegel, C. Lawrence, Mathematical model of the corneo-scleral shell as applied to intraocular pressure–volume relations and applanation tonometry. Ann. Biomed. Eng. 1, 87–89 (1972)PubMedCrossRefGoogle Scholar
  7. 7.
    W.A. Schlegel, C. Lawrence, L.G. Staberg, Viscoelastic response in the enucleated human eye. Investigat. Ophthalmol. 11(7), 593–599 (1972)Google Scholar
  8. 8.
    A.S. Kobayashi, L.G. Staberg, W.A. Schlegel, Viscoelastic properties of human cornea. Exp. Mech. 13(12), 497–503 (1973)CrossRefGoogle Scholar
  9. 9.
    P.R. Greene, T.A. McMahon, Scleral creep vs. temperature and pressure in vitro. Exp. Eye Res. 29, 527–537 (1979)PubMedCrossRefGoogle Scholar
  10. 10.
    S.D. Klyce, S.R. Russell, Numerical solution of coupled transport equations applied to corneal hydration dynamics. J. Physiol. 292, 107–134 (1979)PubMedCentralPubMedGoogle Scholar
  11. 11.
    P.R. Greene, Mechanical considerations in myopia: relative effects of accommodation, convergence, intraocular pressure and the extraocular muscles. Am. J. Optom. Physiol. Opt. 57, 902–914 (1980)PubMedCrossRefGoogle Scholar
  12. 12.
    A. Arciniegas, L.E. Amaya, Asociacion de la queratotomia radialy la circular para la correccion de ametropias. Enfoque biomecdnico, chapter XXII. Soc. Am. de Oftalmologi’a, Bogota, (1981)Google Scholar
  13. 13.
    I.S. Nash, P.R. Greene, C.S. Foster, Comparison of mechanical properties of keratoconus and normal corneas. Exp. Eye Res. 35, 413–423 (1982)PubMedCrossRefGoogle Scholar
  14. 14.
    J.L. Battaglioli, R.D. Kamm, Measurements of the compressive properties of scleral tissue. Invest. Ophthalmol. Vis. Sci. 114(2), 202–215 (1992)Google Scholar
  15. 15.
    C. Edmund, Corneal topography and elasticity in normal and keratoconic eyes. Acta Ophthalmol. 193, 1–36 (1989)Google Scholar
  16. 16.
    E. Sjontoft, C. Edmund, In vivo determination of young’s modulus for the human cornea. Bull. Math. Biol. 49, 217–232 (1987)PubMedGoogle Scholar
  17. 17.
    J.O. Hjortdal, N. Ehlers, Extensibility of the normo-hydrated human cornea. Acta Ophthalmol. Scand. 73(1), 12–17 (1995)PubMedCrossRefGoogle Scholar
  18. 18.
    J.O. Hjortdal, Regional elastic performance of the human cornea. J. Biomech. 29, 931–942 (1996)PubMedCrossRefGoogle Scholar
  19. 19.
    J.O. Hjortdal, N. Ehlers, Acute tissue deformation of the human cornea after radial keratotomy. J. Refract. Surg. 12(3), 391–400 (1996)PubMedGoogle Scholar
  20. 20.
    B. Jue, D. Maurice, The mechanical properties of the rabbit and human cornea. J. Biomech. 19(10), 847–854 (1986)PubMedCrossRefGoogle Scholar
  21. 21.
    K.D. Hanna, F.E. Jouve, G.O. Waring III, Computer simulation of arcuate keratotomy for astigmatism. Refract. Corneal Surg. 8(2), 152–163 (1992)PubMedGoogle Scholar
  22. 22.
    H. Kasprzak, W.N. Forster, G. von Bally, Measurement of elastic modulus of the bovine cornea by means of holographic interferometry. Part 1. Method and experiment. Optom. Vis. Sci. 70(7), 535–544 (1993)PubMedCrossRefGoogle Scholar
  23. 23.
    E. Yavitz, Reshaping the cornea. Ocular Surg. News, Online article, p. 3, April 1996Google Scholar
  24. 24.
    T. Seiler, M. Matallana, S. Sendler, T. Bende, Does Bowman’s layer determine the biomechanical properties of the cornea? Refract. Corneal Surg. 8(2), 139–142 (1992)PubMedGoogle Scholar
  25. 25.
    J.O. Hjortdal, N. Ehlers, Effect of excimer laser keratectomy on the mechanical performance of the human cornea. Acta Ophthalmol. Scand. 73(1), 18–24 (1995)PubMedCrossRefGoogle Scholar
  26. 26.
    F. Soergel, B. Jean, T. Seiler, T. Bende, S. Miicke, W. Pechhold, L. Pels, Dynamic mechanical spectroscopy of the cornea for measurement of its viscoelastic properties in vitro. German J. Ophthalmol. 4, 151–156 (1995)Google Scholar
  27. 27.
    K.A. Buzard, B.R. Fundingsland, Assessment of corneal wound healing by interactive topography. J. Refract. Surg. 14, 53–60 (1998)PubMedGoogle Scholar
  28. 28.
    G. Simon, Q. Ren, Biomechanical behavior of the cornea and its response to radial keratotomy. Refract. Corneal Surg. 10(3), 343–356 (1994). Comments by R. K. Maloney, S. T. Feldman and K. BuzardGoogle Scholar
  29. 29.
    P. Roy, W.M. Petroll, A.E. McKinney, C.J. Chuong, Computational models of the effects of hydration on corneal biomechanics and the results of radial keratotomy. J. Biomech. Eng. 118, 255–258 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    M.R. Bryant, P.J. McDonnell, A triphasic analysis of corneal swelling and hydration control. J. Biomech. Eng. 120(3), 370–381 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    H. Goldmann, Applanation tonometry, in Glau-coma, ed. by F.W. Newell, Trans. 2nd. Conference, Josiah Macy, Jr. Foundation, N. Jersey, 1959, pp. 167–220Google Scholar
  32. 32.
    K.D. Hanna, F.E. Jouve, M.H. Bercovier, G.O. Waring III, Computer simulation of lamellar keratectomy and laser myopic keratomileusis. Refract. Corneal. Surg. 4, 222–231 (1988)Google Scholar
  33. 33.
    K.D. Hanna, F.E. Jouve, G.O. Waring III, Preliminary computer simulation of the effects of radial keratotomy. Arch. Ophthalmol. 107, 911–918 (1989)PubMedCrossRefGoogle Scholar
  34. 34.
    M.J. Lynn, G.O. Waring III, R.D. Sperduto, The PERK Study Group, Factors affecting outcome and predictability of radial keratotomy in the perk study. Arch Ophthalmol. 105, 42–51 (1987)PubMedCrossRefGoogle Scholar
  35. 35.
    S. Kwitko, M.R. Sawusch, P.J. McDonnell, H. Moreira, D.C. Gritz, D. Evensen, Efecto de la cirugi’a de los musculos extraoculares sobre la topografi’a corneal. Arch. Ophthalmol. (ed. esp.) 2(6), 68–73 (1991)Google Scholar
  36. 36.
    R.H. Rand, S.R. Lubkin, H.C. Howland, Analytical model of corneal surgery. J. Biomech. Eng. 113(2), 239–241 (1991)PubMedCrossRefGoogle Scholar
  37. 37.
    P.M. Pinsky, D.V. Datye, A microstructurally-based finite element model of the incised human cornea. J. Biomech. 24(10), 907–922 (1991)PubMedCrossRefGoogle Scholar
  38. 38.
    P.M. Pinsky, D.V. Datye, Numerical modeling of radial, astigmatic and hexagonal keratotomy. Refract. Corneal Surg. 8(2), 164–172 (1992)PubMedGoogle Scholar
  39. 39.
    K.A. Buzard, Introduction to biomechanics of the cornea. Refract. Corneal Surg. 8(2), 127–138 (1992)PubMedGoogle Scholar
  40. 40.
    K.A. Buzard, J.F. Ronk, M.H. Friedlander, D.J. Tepper, D.A. Hoeltzel, K. Choe, Quantitative measurement of wound spreading in radial keratotomy. Refract. Corneal Surg. 8(3), 217–223 (1992)PubMedGoogle Scholar
  41. 41.
    M.R. Sawusch, P.J. McDonnell, Computer modeling of wound gape following radial keratotomy. Refract. Corneal Surg. 8(2), 143–145 (1992)PubMedGoogle Scholar
  42. 42.
    R.P. Vito, P.H. Carnell, Finite element method based mechanical models of the cornea for pressure and indenter loading. Refract. Corneal Surg. 8(2), 146–151 (1992)PubMedGoogle Scholar
  43. 43.
    A. Arciniegas, L.E. Amaya, L.M. Hernandez, Physical factors that influence the measurement of the intraocular pressure with Goldmann’s tonometer. New Trends Ophthalmol. 1(1), 170–200 (1986)Google Scholar
  44. 44.
    P.H. Carnell, R.P. Vito, A model for estimating corneal stiffness using an indenter. J. Biomech. Eng. 114(4), 549–552 (1992)PubMedCrossRefGoogle Scholar
  45. 45.
    W.O. Wray, E.D. Best, L.Y. Cheng, A mechanical model for radial keratotomy: toward a predictive capability. J. Biomech. Eng. 116(1), 56–61 (1994)PubMedCrossRefGoogle Scholar
  46. 46.
    C. Roberts, Characterization of the inherent error in a spherically-biased corneal topography system in mapping a radially aspheric surface. Refract. Corneal Surg. 10, 103–111 (1994)Google Scholar
  47. 47.
    P. Le Tallec, C. Rahier, A. Kaiss, Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation. Comput. Methods Appl. Mech. Eng. 109, 233–258 (1993)CrossRefGoogle Scholar
  48. 48.
    P. Le Tallec, C. Rahier, Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. Int. J. Numer. Methods Eng. 37, 1159–1186 (1994)CrossRefGoogle Scholar
  49. 49.
    F.A. Guarnieri, Modelo Biomecanico del Ojo para Diseno Asistido por Computadora de la Cirugia Refractiva. PhD Dissertation, FICH-INTEC, Universidad Nacional del Litoral, Santa Fe, Argentina, 1999Google Scholar
  50. 50.
    F.A. Guarnieri, A. Cardona, Computer simulation of refractive surgery by using a finite element model, in Abstract in Proceedings World Congress on Medical Physics and Biomedical Engineering, Rio de Janeiro, Brazil, 1994Google Scholar
  51. 51.
    F.A. Guarnieri, A. Cardona, Videokeratoscope-based computer simulation of the refractive surgery. IEEE Trans. Biomed. Eng. (1998). Report to CONICETGoogle Scholar
  52. 52.
    F.A. Guarnieri, Modelo biomecanico del ojo para diseno asistido por computadora de la cirugi’a refractiva. Proyecto de grado de bioingeniena, Facultad de Ingeniena, UNER, Oro Verde, Entre Ri’os, Argentina, 1993Google Scholar
  53. 53.
    G. Smith, The Eye and Visual Optical Instruments (Cambridge University Press, New York, 1997)CrossRefGoogle Scholar
  54. 54.
    D.B. Henson, Optometric Instrumentation, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)Google Scholar
  55. 55.
    F.A. Guarnieri, A. Cardona, Moving least square method in the simulation of the corneal topography by fe in the refractive surgery, in Congreso Argentino de Mecanica Computacional (ENIEF 95), Bariloche, Argentina, 1995Google Scholar
  56. 56.
    M.R. Bryant, P.J. McDonnell, Constitutive laws for biomechanical modeling of refractive surgery. J. Biomech. Eng. 118, 473–481 (1996)PubMedCrossRefGoogle Scholar
  57. 57.
    M.G. Johnson, Nonlinear Optimization using the algorithm of Hooke and Jeeves, 1994. Documentacion en codigo fuente en C.Google Scholar
  58. 58.
    D.A. Hoeltzel, P. Altman, K.A. Buzard, K. Choe, Strip extensiometry for comparison of the mechanical response of bovine, rabbit and human corneas. J. Biomech. Eng. 114(2), 202–215 (1992)PubMedCrossRefGoogle Scholar
  59. 59.
    A. Nevyas-Wallace, Pattern recognition in subclinical and clinical keratoconus using elevation-based topography, in Abstracts in Pre-AAO. ISRS, 1996, p. 98Google Scholar
  60. 60.
    W.M. Petroll, P. Roy, C.J. Chuong, B. Hall, H.D. Cavanagh, J.V. Jester, Measurement of surgically induced corneal deformations using three-dimensional confocal microscopy. Cornea 15(2), 154–164 (1996)PubMedCrossRefGoogle Scholar
  61. 61.
    S.C. Velinsky, M.R. Bryant, On the computer-aided and optimal design of keratorefractive surgery. Refract. Corneal Surg. 8(2), 173–182 (1992)PubMedGoogle Scholar
  62. 62.
    M. Sutcu, Orthotropic and transversely isotropic stress-strain relations with built-in coordinate transformations. Int. J. Solids Struct. 29(4), 503–518 (1992)Google Scholar
  63. 63.
    F.A. Guarnieri, A. Cardona, 3d viscoelastic nonlinear incompressible finite element in large strain of the cornea. application in refractive surgery. in Articles in CD-ROM Fourth World Congress of Computational Mechanics, 1998Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BioengineeringCentro de Investigación de Métodos Computacionales (CIMEC), Predio CONICET-Santa FeSanta FeArgentina

Personalised recommendations