Skip to main content

Activity-Dependent Protein Transport as a Synaptic Tag

  • Chapter
  • First Online:
Synaptic Tagging and Capture

Abstract

The “synaptic tagging and capture” hypothesis proposed that a hypothetical, cell biological mark is activated in the synapses undergoing early-phase plasticity. Newly synthesized plasticity-related proteins (PRPs) are assumed to establish late plasticity only in the marked synapses after unspecific transport along dendrites from soma. Demonstration of the “synaptic tagging and capture” hypothesis will be achieved by showing that a specific cell biological activity regulates behaviors of an exemplifying PRP in accordance with several unique characteristics assumed by the original hypothesis. We hypothesized that synaptic activity affects synaptic localization of PRPs on transport, namely, active spines receive PRPs, while no transport to inactive spines. We observed transport of Vesl-1S (also called Homer-1a) protein, one of PRPs, by measuring fluorescence of fused protein with EGFP (VE) in spines, and found that somatic Vesl-1S protein prevailed in most dendritic branches, and was translocated into spines where NMDA receptors were activated. The NMDA receptor-dependent translocation of VE protein from dendrite to spine fulfilled many of the hypothesized conditions of synaptic tagging, demonstrating the synaptic tagging hypothesis with Vesl-1S as an exemplifying PRP.

In addition to summarizing our findings, we would like to discuss the relevance of synaptic tagging as an input-specificity mechanism of late plasticity. An input-specificity mechanism restricts synapses where the expression mechanism of plasticity is activated. An essential feature of late plasticity is that it depends on synaptic functions of multiple PRPs, which is newly synthesized in various loci and lags. Late expression mechanism may require integrated functions of multiple PRPs, each of which likely has distinct localization, regulation, and function in the synapse. Synaptic tagging is a mechanism that allows synapse-specific function of PRPs, thereby assumed as a late input-specificity mechanism. Considering diversity in cell biological and biochemical properties of PRPs, it is suggested that multiple cell biological activities work as synaptic tagging, each of which is specific to a subset of PRPs and differently regulates synaptic localization and function of the PRPs at distinct timing. Activity-dependent spine translocation of Vesl-1S/Homer-1a may be an example of the diverse spectrum of synaptic tagging mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200

    Article  PubMed  CAS  Google Scholar 

  • Ageta H, Kato A, Hatakeyama S, Nakayama K, Isojima Y, Sugiyama H (2001) Regulation of the level of Vesl-1S/Homer-1a proteins by ubiquitin-proteasome proteolytic systems. J Biol Chem 276:15893–15897

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ango F, Pin JP, Tu JC, Xiao B, Worley PF, Bockaert J, Fagni L (2000) Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by Homer1 proteins and neuronal excitation. J Neurosci 20:8710–8716

    PubMed  CAS  Google Scholar 

  • Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411:962–965

    Article  PubMed  CAS  Google Scholar 

  • Attwood BK, Bourgognon JM, Patel S, Mucha M, Schiavon E, Skrzypiec AE, Young KW, Shiosaka S, Korostynski M, Piechota M, Przewlocki R, Pawlak R (2011) Neuropsin cleaves EphB2 in the amygdale to control anxiety. Nature 473:372–375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ballarini F, Moncada D, Martinez MC, Alen N, Viola H (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci U S A 106:14599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bliss TVP, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate gyrus of the anaesthetized rabbit. J Physiol 232:331–356

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310:866–869

    Article  PubMed  CAS  Google Scholar 

  • Brady ST (1995) A kinesin medley: biochemical and functional heterogeneity. Trends Cell Biol 5:159–164

    Article  PubMed  CAS  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien RO, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    Article  PubMed  CAS  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  PubMed  CAS  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL (2003) The induction of N-methyl-d-aspartate receptor-dependent long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:635–641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Correia SS, Bassani S, Brown TC, Lise MF, Backos DS, El-husseini A, Passafaro M, Esteban JA (2008) Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 11:457–466

    Article  PubMed  CAS  Google Scholar 

  • Deller T, Korte M, Chabanis S, Drakew A, Schwegler H, Stefani GG, Zuniga A, Schwarz K, Bonhoeffer T, Zeller R, Frotscher M, Mundel P (2003) Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc Natl Acad Sci U S A 100:10494–10499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Desmond NL, Levy WB (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J Comp Neurol 253:476–482

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Engert F, Bonhoeffer T (1997) Synapse specificity of long-term potentiation breaks down at short distances. Nature 388:279–284

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R, Nägerl UV, Morris RGM, Bonhoeffer T (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    PubMed  CAS  Google Scholar 

  • Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nägerl UV (2006) A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52:239–245

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris RGM (1998a) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37:545–552

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris RGM (1998b) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21:181–188

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:57–65

    Article  PubMed  CAS  Google Scholar 

  • Frey S, Bergado-Rosado J, Seidenbecher T, Pape HC, Frey JU (2001) Reinforcement of early long-term potentiation (Early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: Heterosynaptic induction mechanisms of late-LTP. J Neurosci 21:3697–3703

    PubMed  CAS  Google Scholar 

  • Fukazawa U, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7:575–583

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132–146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi MK, Ames HM, Hayashi Y (2006) Tetrameric hub structure of postsynaptic scaffolding protein Homer. J Neurosci 26:8492–8501

    Article  PubMed  CAS  Google Scholar 

  • Hayashi MK, Tang C, Verpelli C, Narayanan R, Steams MH, Xu RM, Li H, Sala C, Hayashi Y (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137:159–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang JD, Brady ST, Richards BW, Srenoien D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270

    Article  PubMed  CAS  Google Scholar 

  • Huang T, McDonough CB, Abel T (2006) Compartmentalized PKA signaling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation. Eur J Cell Biol 85:635–642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Inoue Y, Udo H, Inokuchi K, Sugiyama H (2007) Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience 150:841–852

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Nakao H, Migishima R, Hino T, Matsui M, Hayashi F, Nakao K, Manabe T, Aiba A, Inokuchi K (2009) Requirement of the immediate early gene vesl-1S/homer-1a for fear memory formation. Mol Brain 2:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishikawa Y, Horii Y, Tamura H, Shiosaka S (2008) Neuropsin (KLK8)-dependent and -independent synaptic tagging in the Schaffer-collateral pathway of mouse hippocampus. J Neurosci 28:843–849

    Article  PubMed  CAS  Google Scholar 

  • Ju W, Morishita W, Tsui J, Gaitta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 3:244–253

    Article  CAS  Google Scholar 

  • Kato A, Ozawa F, Saitoh Y, Hirai K, Inokuchi K (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412:183–189

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Ozawa F, Saitoh Y, Fukazawa Y, Sugiyama H, Inokuchi K (1998) Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J Biol Chem 273:23969–23975

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  PubMed  CAS  Google Scholar 

  • Krug M, Lössner B, Ott T (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull 13:39–42

    Article  PubMed  CAS  Google Scholar 

  • Kuroda TS, Fukuda M (2004) Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol 6:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350

    Article  PubMed  CAS  Google Scholar 

  • LeBeux YJ, Willemot J (1975) An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labeling. II. The synapses. Cell Tissue Res 160:37–68

    PubMed  CAS  Google Scholar 

  • Lee SH, Choi JH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Lee SH, Kim H, Kaang BK (2008) Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Lesburgueres E, Gobbo OL, Alaux-Cantin S, Hambuchen A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331:924–928

    Article  PubMed  CAS  Google Scholar 

  • Lewis TL, Mao T, Svoboda K, Arnold DB (2009) Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12:568–576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ling DSF, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase Mz is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295–296

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu J, Helton TD, Blanpird TA, Racz B, Newpher TM, Weinberg RJ, Ehlers MD (2007) Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to homer. Neuron 55:874–889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu Y, Ji Y, Ganesan Sm Schloesser R, Marinowich K, Sun M, Mei F, Chao MV, Lu B (2011) TrkB as a potential synaptic and behavioral tag. J Neurosci 31:11762–11771

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Kauer JA, Zucher RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:81–84

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Martin KC, Kosik KS (2002) Synaptic tagging—Who’s it? Nat Rev Neurosci 3:813–820

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Setou M, Inokuchi K (2007) Transcriptome analysis reveals the population of dendritic RNAs and their redistribution by neural activity. Neurosci Res 57:411–423

    Article  PubMed  CAS  Google Scholar 

  • Matsuo R, Murayama A, Saitoh Y, Sakaki Y, Inokuchi K (2000) Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J Neurochem 74:2239–2249

    Article  PubMed  CAS  Google Scholar 

  • Matsuo N, Reijmers L, Mayford M (2008) Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 319:1104–1107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M (2002) Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36:507–519

    Article  PubMed  CAS  Google Scholar 

  • Moga DE, Calhoun ME, Chowdhury A, Worley P, Morrison JH, Shapiro ML (2004) Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience 125:7–11

    Article  PubMed  CAS  Google Scholar 

  • Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murase S, Mosser E, Schuman EM (2002) Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35:91–105

    Article  PubMed  CAS  Google Scholar 

  • Navakkode S, Sajikumar S, Frey JU (2004) The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging. J Neurosci 24:7740–7744

    Article  PubMed  CAS  Google Scholar 

  • Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y (1993) Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363:718–722

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA (2003) Expression mechanisms underlying long-term potentiation: a postsynaptic view. Philos Trans R Soc Lond B Biol Sci 358:721–726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Novak L, Bregestovski P, Asher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307:462–465

    Article  Google Scholar 

  • Okada D, Ozawa F, Inokuchi K (2009) Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science 324:904–909

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    Article  PubMed  CAS  Google Scholar 

  • Okubo-Suzuki R, Okada D, Sekiguchi M, Inokuchi K (2008) Synaptopodin maintains the neural activity-dependent enlargement of dendritic spines in hippocampal neurons. Mol Cell Neurosci 38:266–276

    Article  PubMed  CAS  Google Scholar 

  • Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M, Natsume N, Chowdhury S, Sakimura K, Worley PF, Bito H (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:886–898

    Article  PubMed  CAS  Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487

    Article  PubMed  CAS  Google Scholar 

  • Opazo P, Sainlos M, Choquet D (2012) Regulation of AMPA receptor surface diffusion by PSD-95 slot. Curr Opin Neurobiol 22:453–460

    Article  PubMed  CAS  Google Scholar 

  • Ouyang Y, Wong M, Capani F, Rensing N, Lee CS, Liu Q, Neusch C, Martone ME, Wu JY, Yamada K, Ellisman MH, Choi DW (2005) Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur J Neurosci 22:2995–3005

    Article  PubMed  PubMed Central  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran B, Frey JU (2009) Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro. J Neurosci 30:12167–12173

    Article  CAS  Google Scholar 

  • Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317:1230–1233

    Article  PubMed  CAS  Google Scholar 

  • Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  PubMed  CAS  Google Scholar 

  • Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu GY, Nairn AC, Greengard P (2005) The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47:85–100

    Article  PubMed  CAS  Google Scholar 

  • Sadowski RN, Canal CE, Gold PE (2011) Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdale. Neurobiol Learn Mem 96:136–142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sajikumar S, Frey JU (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Navakkode S, Sacktor TC, Frey JU (2005) Synaptic tagging and cross-tagging: The role of protein kinase Mζ in maintaining long-term potentiation but not long-term depression. J Neurosci 25:5750–5856

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007) Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27:5068–5080

    Article  PubMed  CAS  Google Scholar 

  • Sdrulla AD, Linden DJ (2007) Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nat Neurosci 10:546–548

    Article  PubMed  CAS  Google Scholar 

  • Shakiryanova D, Tully A, Levitan ES (2006) Activity-dependent synaptic capture of transiting peptidergic vesicles. Nat Neurosci 9:896–900

    Article  PubMed  CAS  Google Scholar 

  • Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K (2012) Neuronal stimulation induces autophagy in AMPA receptor degradation after chemical long-term depression. J Neurosci 32:10413–10422

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284:162–166

    Article  PubMed  CAS  Google Scholar 

  • Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343

    Article  PubMed  CAS  Google Scholar 

  • Shouten M, Aschrafi A, Bielefeld P, Doxakis E, Fitzsimons CP (2013) MicroRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience 241:188–205

    Article  CAS  Google Scholar 

  • Takenaka K, Morigucfhi T, Nishida E (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280:599–602

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davis GCR, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Hung CP, Schuman EM (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20:1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DL, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726

    Article  PubMed  CAS  Google Scholar 

  • Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD95-complex by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    Article  PubMed  CAS  Google Scholar 

  • Vlachos A, Korkotian E, Schonfeld E, Copanaki E, Deller T, Segal M (2009) Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. J Neurosci 29:1017–1033

    Article  PubMed  CAS  Google Scholar 

  • Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, Martin KC (2009) Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324:1536–1540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group1 metabotropic glutamate receptors with multivalent complexes of Homer-related, synaptic proteins. Neuron 21:707–716

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Matswuo R, Fukazawa Y, Ozawa F, Inokuchi K (2001) Regulated expression of an actin-associated protein, synaptopodin, during long-term potentiation. J Neurochem 79:192–199

    Article  PubMed  CAS  Google Scholar 

  • Young JZ, Isiegas C, Abel T, Nguyen PV (2006) Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur J Neurosci 23:1784–1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TrpC family channels and is required for gating of TrpC1 by IP3 receptors. Cell 114:777–789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Jullietta Frey and Richard G.M. Morris for discussion and Fumiko Ozawa for outstanding technical assistance. D.O. thanks Kazuo Okanoya and Masami Takahashi for discussion and support. The work was done in Mitsubishi Kagaku Institute of Life Sciences. Authors are supported by the Special Coordinate Funds for Promoting Science and Technology from MEXT of the Japanese Government, the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST), JSPS KAKENHI grant number 23220009, a Grant-in-Aid for Scientific Research on Innovative Areas “Memory dynamism” (25115002) from the MEXT the Mitsubishi Foundation, the Uehara Memorial Foundation, and Takeda Foundation to K.I., and Brain Science Foundation and NeuroCreative Laboratory to D.O.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Okada or Kaoru Inokuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okada, D., Inokuchi, K. (2015). Activity-Dependent Protein Transport as a Synaptic Tag. In: Sajikumar, S. (eds) Synaptic Tagging and Capture. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1761-7_6

Download citation

Publish with us

Policies and ethics