Skip to main content

The Behavioral Tagging Hypothesis and Its Implications for Long-Term Memory Formation

  • Chapter
  • First Online:

Abstract

Memories are experience-dependent internal representations of the world that can last from short periods of time to a whole life. The formation of long-term memories relies on several biochemical changes, which inducing modifications in the synaptic efficiency change the way the neurons communicate each other. Interestingly, the formation of a lasting memory does not entirely depend on learning itself; different events occurring before or after a particular experience can affect its processing, impairing, improving, or even inducing lasting memories. The overlapping of neuronal networks involved in the processing of different types of learning might explain why different experiences interact at neuronal level. However, how and where this does really happen is an issue of study.

In 1997, the Synaptic Tagging and Capture (STC) hypothesis provided a strong framework to explain how synaptic specificity can be achieved when inducing long-lasting changes in electrophysiological models of functional plasticity. Ten years later, an analogous argument was used in learning and memory models to postulate the Behavioral Tagging hypothesis. This framework provided solid explanation of how weak events, only capable of inducing transient forms of memories, can result in lasting memories when occurring in the context of other behaviorally relevant experiences. The hypothesis postulates that the formation of lasting memories rely on at least two parallel processes: the setting of a learning tag that determines which memory could be stored and were; and the synthesis of plasticity-related proteins, which once captured at tagged sites will allow the consolidation of a memory for long periods of time. Therefore a weak learning, only able to induce transient forms of memories but also capable of setting a learning tag, could be benefited from the proteins synthesized by a different strong event, processed in the same areas, by using them to consolidate its own lasting memory.

In this chapter we will detail the postulates and predictions of the Behavioral Tagging hypothesis, deepen the mechanisms involved in the setting of the tag and the synthesis of proteins, and revise the universe of experiments performed from rodents to humans in order to discuss its implications on learning and memory processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JD (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50:507–517

    Article  PubMed  CAS  Google Scholar 

  • Agranoff BW, Davis RE, Brink JJ (1966) Chemical studies on memory fixation in goldfish. Brain Res 1:303–309

    Article  PubMed  CAS  Google Scholar 

  • Agranoff BW, Klinger PD (1964) Puromycin effect on memory fixation in the goldfish. Science 146:952–953

    Article  PubMed  CAS  Google Scholar 

  • Almaguer-Melian W, Bergado-Rosado J, Pavon-Fuentes N, Alberti-Amador E, Merceron-Martinez D, Frey JU (2012) Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats. Proc Natl Acad Sci U S A 109:953–958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ballarini F, Martínez M, Díaz Perez M, Moncada D, Viola H (2013) Memory in elementary school children is improved by an unrelated novel experience. PLoS One 8(6):e66875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ballarini F, Moncada D, Martinez MC, Alen N, Viola H (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci U S A 106:14599–14604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barco A, Lopez de Armentia M, Alarcon JM (2008) Synapse-specific stabilization of plasticity processes: the synaptic tagging and capture hypothesis revisited 10 years later. Neurosci Biobehav Rev 32:831–851

    Article  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    Article  PubMed  CAS  Google Scholar 

  • Berman DE, Dudai Y (2001) Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417–2419

    Article  PubMed  CAS  Google Scholar 

  • Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494

    Article  PubMed  Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The Arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101:14515–14520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cammarota M, de Stein ML, Paratcha G, Bevilaqua LR, Izquierdo I, Medina JH (2000) Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochem Res 25:567–572

    Article  PubMed  CAS  Google Scholar 

  • Cassini LF, Sierra RO, Haubrich J, Crestani AP, Santana F, de Oliveira AL, Quillfeldt JA (2013) Memory reconsolidation allows the consolidation of a concomitant weak learning through a synaptic tagging and capture mechanism. Hippocampus 23(10):931–941

    Article  PubMed  CAS  Google Scholar 

  • Davis CD, Jones FL, Derrick BE (2004) Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus. J Neurosci 24:6497–6506

    Article  PubMed  CAS  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho MJ, Benetti F, Izquierdo I (2013) Behavioral tagging of extinction learning. Proc Natl Acad Sci U S A 110:1071–1076

    Article  Google Scholar 

  • Dix SL, Aggleton JP (1999) Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res 99:191–200

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Gong B, Li H, Bai Y, Wu X, Huang Y, He W, Li T, Wang YT (2012) Mechanisms of hippocampal long-term depression are required for memory enhancement by novelty exploration. J Neurosci 32:11980–11990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dudai Y (1989) The neurobiology of memory, concepts, findings, trends. Oxford University, Oxford

    Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Dudai Y, Eisenberg M (2004) Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44:93–100

    Article  PubMed  CAS  Google Scholar 

  • Fonseca R, Nägerl UV, Morris RGM, Bonhoeffer T (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    PubMed  CAS  Google Scholar 

  • Frey S, Frey JU (2008) ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog Brain Res 169:117–143

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Morris RG (1998) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37:545–552

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Gill MB, Tronson NC, Guedea AL, Guzmán YF, Huh KH, Corcoran KA, Swanson GT, Radulovic J (2009) Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus 20(9):1072–1082

    Article  Google Scholar 

  • Gould TJ, Wehner JM (1999) Nicotine enhancement of contextual fear conditioning. Behav Brain Res 102:31–39

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132–146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Im HI, Nakajima A, Gong B, Xiong X, Mamiya T, Gershon ES, Zhuo M, Tang YP (2009) Post-training dephosphorylation of eEF-2 promotes protein synthesis for memory consolidation. PLoS One 4:e7424

    Article  PubMed  PubMed Central  Google Scholar 

  • Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 29:496–505

    Article  PubMed  CAS  Google Scholar 

  • James W (1890) The principles of psychology. Herny Holt and Company, New York

    Book  Google Scholar 

  • Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147:509–524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jost A (1897) Die Assoziationsfestigkeit in ihrer Abhängigkeit von der Verteilung der Wiederholungen [The strength of associations in their dependence on the distribution of repetitions]. Z Psychol Physiol Sinnesorgane 16:436–472

    Google Scholar 

  • Kandel E, Schwartz J, Thomas M (2000) Principles of neural science. McGraw Hill, New York

    Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    Article  PubMed  CAS  Google Scholar 

  • Kitchigina V, Vankov A, Harley C, Sara SJ (1997) Novelty-elicited, noradrenaline-dependent enhancement of excitability in the dentate gyrus. Eur J Neurosci 9:41–47

    Article  PubMed  CAS  Google Scholar 

  • Konorski J (1967) Integrative activity of the brain. University of Chicago, Chicago

    Google Scholar 

  • Lechner HA, Squire LR, Byrne JH (1999) 100 years of consolidation—remembering Muller and Pilzecker. Learn Mem 6:77–87

    PubMed  CAS  Google Scholar 

  • Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2012) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb Cortex 24(2):353–363

    Article  PubMed  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531

    PubMed  CAS  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Ji Y, Ganesan S, Schloesser R, Martinowich K, Sun M, Mei F, Chao MV, Lu B (2011) TrkB as a potential synaptic and behavioral tag. J Neurosci 31:11762–11771

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Morris RG (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12:609–636

    Article  PubMed  CAS  Google Scholar 

  • Martinez MC, Alen N, Ballarini F, Moncada D, Viola H (2012) Memory traces compete under regimes of limited Arc protein synthesis: implications for memory interference. Neurobiol Learn Mem 98:165–173

    Article  PubMed  CAS  Google Scholar 

  • Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4. dio:10.1101/cshperspect.a005751

  • McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  PubMed  CAS  Google Scholar 

  • Merhav M, Rosenblum K (2008) Facilitation of taste memory acquisition by experiencing previous novel taste is protein-synthesis dependent. Learn Mem 15:501–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    Article  PubMed  CAS  Google Scholar 

  • Moncada D, Ballarini F, Martinez MC, Frey JU, Viola H (2011) Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proc Natl Acad Sci U S A 108:12931–12936

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moncada D, Frey JU (2011) The effects of LTP induction in the formation of hippocampus-dependent memories: synaptic and behavioral tagging. oster-oster, Washington

    Google Scholar 

  • Moncada D, Martinez MC, Ballarini F, Alen N, Viola H (2008) In the search for the behavioral tag. Poster at SFN meeting 2008

    Google Scholar 

  • Moncada D, Viola H (2006) Phosphorylation state of CREB in the rat hippocampus: a molecular switch between spatial novelty and spatial familiarity? Neurobiol Learn Mem 86:9–18

    Article  PubMed  CAS  Google Scholar 

  • Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27:7476–7481

    Article  PubMed  CAS  Google Scholar 

  • Moncada D, Viola H (2008) PKMzeta inactivation induces spatial familiarity. Learn Mem 15:810–814

    Article  PubMed  Google Scholar 

  • Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234:1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Müller G, Pilzecker A (1900) Experimentelle Beiträge zur Lehre vom Gedächtniss: Zeitschrift für Psychologie. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Mumby DG, Gaskin S, Glenn MJ, Schramek TE, Lehmann H (2002) Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9:49–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadel L, Hardt O (2011) Update on memory systems and processes. Neuropsychopharmacology 36:251–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Navakkode S, Sajikumar S, Frey JU (2005) Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type IV-specific phosphodiesterase inhibitor rolipram and its effect on synaptic tagging. J Neurosci 25:10664–10670

    Article  PubMed  CAS  Google Scholar 

  • O’Keef J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University, London

    Google Scholar 

  • Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M, Natsume R, Chowdhury S, Sakimura K, Worley PF, Bito H (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:886–898

    Article  PubMed  CAS  Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144

    Article  PubMed  CAS  Google Scholar 

  • Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    Article  PubMed  CAS  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  PubMed  CAS  Google Scholar 

  • Phillips RG, LeDoux JE (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1:34–44

    PubMed  CAS  Google Scholar 

  • Phillips RG, LeDoux JE (1995) Lesions of the fornix but not the entorhinal or perirhinal cortex interfere with contextual fear conditioning. J Neurosci 15:5308–5315

    PubMed  CAS  Google Scholar 

  • Quevedo J, Vianna MR, Martins MR, Barichello T, Medina JH, Roesler R, Izquierdo I (2004) Protein synthesis, PKA, and MAP kinase are differentially involved in short- and long-term memory in rats. Behav Brain Res 154:339–343

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran B, Frey JU (2009) Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro. J Neurosci 29:12167–12173

    Article  PubMed  CAS  Google Scholar 

  • Redondo RL, Morris RGM (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12:17–30

    Article  PubMed  CAS  Google Scholar 

  • Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989

    Article  PubMed  CAS  Google Scholar 

  • Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  PubMed  CAS  Google Scholar 

  • Ribot T (1881) Les Maladies de la Memoire. Appleton-Century-Crofts, New York

    Google Scholar 

  • Romano A, Locatelli F, Freudenthal R, Merlo E, Feld M, Ariel P, Lemos D, Federman N, Fustinana MS (2006) Lessons from a crab: molecular mechanisms in different memory phases of Chasmagnathus. Biol Bull 210:280–288

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McGaugh JL (2011) Memory modulation. Behav Neurosci 125:797–824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sajikumar S, Frey JU (2004) Resetting of ‘synaptic tags’ is time- and activity-dependent in rat hippocampal CA1 in vitro. Neuroscience 129:503–507

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007) Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27:5068–5080

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Navakkode S, Sacktor TC, Frey JU (2005) Synaptic tagging and cross-tagging: the role of protein kinase Mzeta in maintaining long-term potentiation but not long-term depression. J Neurosci 25:5750–5756

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ, Vankov A, Hervé A (1994) Locus coeruleus-evoked responses in behaving rats: a clue to the role of noradrenaline in memory. Brain Res Bull 35:457–465

    Article  PubMed  CAS  Google Scholar 

  • Schwabe L, Bohringer A, Chatterjee M, Schachinger H (2008) Effects of pre-learning stress on memory for neutral, positive and negative words: different roles of cortisol and autonomic arousal. Neurobiol Learn Mem 90:44–53

    Article  PubMed  CAS  Google Scholar 

  • Skaggs E (1925) Further studies in retroactive inhibition. The psychological review company, Lancaster, PA

    Google Scholar 

  • Straube T, Korz V, Balschun D, Frey JU (2003a) Requirement of beta-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J Physiol 552:953–960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Straube T, Korz V, Frey JU (2003b) Bidirectional modulation of long-term potentiation by novelty-exploration in rat dentate gyrus. Neurosci Lett 344:5–8

    Article  PubMed  CAS  Google Scholar 

  • Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52:403–407

    Article  PubMed  CAS  Google Scholar 

  • Vankov A, Hervé-Minvielle A, Sara SJ (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci 7:1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Viola H, Furman M, Izquierdo LA, Alonso M, Barros DM, de Souza MM, Izquierdo I, Medina JH (2000) Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty. J Neurosci 20:RC112

    PubMed  CAS  Google Scholar 

  • Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKM-zeta is not required for hippocampal synaptic plasticity, learning and memory. Nature 493:420–423

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Hu Y, Tsien JZ (2006) Molecular and systems mechanisms of memory consolidation and storage. Prog Neurobiol 79:123–135

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Redondo RL, Morris RGM (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci U S A 107:19537–19542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Wibrand K, Pai B, Siripornmongcolchai T, Bittins M, Berentsen B, Ofte ML, Weigel A, Skaftnesmo KO, Bramham CR (2012) MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS One 7:e41688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Winograd M, Viola H (2004) Detection of novelty, but not memory of spatial habituation, is associated with an increase in phosphorylated cAMP response element-binding protein levels in the hippocampus. Hippocampus 14:117–123

    Article  PubMed  CAS  Google Scholar 

  • Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, Duzel E (2005) Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron 45:459–467

    Article  PubMed  CAS  Google Scholar 

  • Won J, Silva AJ (2008) Molecular and cellular mechanisms of memory allocation in neuronetworks. Neurobiol Learn Mem 89:285–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young JZ, Isiegas C, Abel T, Nguyen PV (2006) Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur J Neurosci 23:1784–1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JZ, Nguyen PV (2005) Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J Neurosci 25:7221–7231

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Moncada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moncada, D., Ballarini, F., Martinez, M.C., Viola, H. (2015). The Behavioral Tagging Hypothesis and Its Implications for Long-Term Memory Formation. In: Sajikumar, S. (eds) Synaptic Tagging and Capture. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1761-7_14

Download citation

Publish with us

Policies and ethics