Skip to main content

Optical Coherence Tomography of Malignancies of the Head and Neck

  • Chapter
  • First Online:
Biomedical Optics in Otorhinolaryngology

Abstract

Optical coherence tomography (OCT) is a minimally invasive optical imaging modality which produces high-resolution, three-dimensional (3D) images of biological tissue. In the last 10 years, biophotonics and optics research have led to the advancement of OCT technology and expansion of OCT applications within Otorhinolaryngology—Head and Neck Surgery. In vivo clinical studies have demonstrated the potential for OCT to perform minimally invasive diagnostic imaging and differentiation of premalignant and malignant lesions of the head and neck. This chapter reviews the research and clinical applications for OCT imaging of malignancy in the upper aerodigestive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer facts & figures 2014. Atlanta: American Cancer Society; 2014.

    Google Scholar 

  2. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.

    Article  CAS  PubMed  Google Scholar 

  3. Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist. 2010;15(9):994–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. Surveillance, Epidemiology, and End Results Program (SEER) Cancer Statistics Review, 1975–2011. 2014 [2014 Sept 10; 2014 Sept 20]. Available from: http://seer.cancer.gov/csr/1975_2011/.

  5. Mashberg A, Feldman LJ. Clinical criteria for identifying early oral and oropharyngeal carcinoma: erythroplasia revisited. Am J Surg. 1988;156(4):273–5.

    Article  CAS  PubMed  Google Scholar 

  6. Lingen MW, et al. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44(1):10–22.

    Article  PubMed  Google Scholar 

  7. Huang D, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Boer JF, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–9.

    Article  PubMed  Google Scholar 

  9. Choma M, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9.

    Article  PubMed  Google Scholar 

  10. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94.

    Article  CAS  PubMed  Google Scholar 

  11. de Boer JF, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22(12):934–6.

    Article  PubMed  Google Scholar 

  12. de Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt. 2002;7(3):359–71.

    Article  PubMed  Google Scholar 

  13. Reibel J. Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med. 2003;14(1):47–62.

    Article  PubMed  Google Scholar 

  14. Walsh T, et al. Clinical assessment to screen for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults. Cochrane Database Syst Rev. 2013;11, CD010173.

    PubMed  Google Scholar 

  15. Wilder-Smith P, et al. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35(4):269–75.

    Article  PubMed  Google Scholar 

  16. Matheny ES, et al. Optical coherence tomography of malignancy in hamster cheek pouches. J Biomed Opt. 2004;9(5):978–81.

    Article  PubMed  Google Scholar 

  17. Wilder-Smith P, et al. Noninvasive imaging of oral premalignancy and malignancy. J Biomed Opt. 2005;10(5):051601.

    Article  PubMed  Google Scholar 

  18. Hanna NM, et al. Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches. Photomed Laser Surg. 2006;24(3):402–9.

    Article  PubMed  Google Scholar 

  19. Graf RN, Brown WJ, Wax A. Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source. Opt Lett. 2008;33(12):1285–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graf RN, et al. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt. 2009;14(6):064030.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim CS, et al. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt. 2009;14(3):034008.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park J, et al. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization. Biomed Opt Express. 2010;1(1):186–200.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ahn YC, et al. Multimodality approach to optical early detection and mapping of oral neoplasia. J Biomed Opt. 2011;16(7):076007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pande P, et al. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch. J Biomed Opt. 2014;19(8):086022.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tsai MT, et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt. 2008;13(4):044012.

    Article  PubMed  Google Scholar 

  26. Jerjes W, et al. In vitro examination of suspicious oral lesions using optical coherence tomography. Br J Oral Maxillofac Surg. 2010;48(1):18–25.

    Article  PubMed  Google Scholar 

  27. Adegun OK, et al. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Med Sci. 2012;27(4):795–804.

    Article  PubMed  Google Scholar 

  28. Hamdoon Z, et al. Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 2012;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamdoon Z, et al. Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study. Photodiagnosis Photodyn Ther. 2013;10(1):17–27.

    Article  PubMed  Google Scholar 

  30. Feldchtein F, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3(6):239–50.

    Article  CAS  PubMed  Google Scholar 

  31. Ozawa N, et al. In vivo imaging of human labial glands using advanced optical coherence tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(3):425–9.

    Article  PubMed  Google Scholar 

  32. Prestin S, et al. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34(12):1777–81.

    Article  PubMed  Google Scholar 

  33. Lee CK, et al. Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express. 2012;3(7):1632–46.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Volgger V, et al. Evaluation of optical coherence tomography to discriminate lesions of the upper aerodigestive tract. Head Neck. 2013;35(11):1558–66.

    Article  PubMed  Google Scholar 

  35. Chen SF, et al. Oral cancer diagnosis with optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7227–9.

    PubMed  Google Scholar 

  36. Ridgway JM, et al. In vivo optical coherence tomography of the human oral cavity and oropharynx. Arch Otolaryngol Head Neck Surg. 2006;132(10):1074–81.

    Article  PubMed  Google Scholar 

  37. Tsai MT, et al. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express. 2008;16(20):15847–62.

    Article  PubMed  Google Scholar 

  38. Tsai MT, et al. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt. 2009;14(4):044028.

    Article  PubMed  Google Scholar 

  39. Wilder-Smith P, et al. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41(5):353–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  CAS  PubMed  Google Scholar 

  41. Braakhuis BJ, et al. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.

    CAS  PubMed  Google Scholar 

  42. Barnes L, Tse L, Hunt JL, Brandwein-Gensler M, Urken M, Slootweg P, Gale N, Cardesa A, Zidar N, Boffetta P. Tumours of the hypopharynx, larynx and trachea: introduction. In: Eveson J, Barnes L, Reichart P, Sidransky D, editors. World health organization classification of tumours. Pathology and genetics of head and neck tumours. Lyon, France: IARC Press; 2005. p. 111–7.

    Google Scholar 

  43. Hirano M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr (Basel). 1974;26(2):89–94.

    Article  CAS  Google Scholar 

  44. Zeitels SM. Premalignant epithelium and microinvasive cancer of the vocal fold: the evolution of phonomicrosurgical management. Laryngoscope. 1995;105(3 Pt 2):1–51.

    Article  CAS  PubMed  Google Scholar 

  45. Luerssen K, et al. Optical characterization of vocal folds with optical coherence tomography. Photon Ther Diagn. 2005;5686:328–32.

    Article  Google Scholar 

  46. Lurssen K, et al. Optical characterization of vocal folds using optical coherence tomography—art. no. 60781O. Photon Ther Diagn II. 2006;6078:O781.

    Google Scholar 

  47. Lurssen K, et al. Optical coherence tomography in the diagnosis of vocal folds. HNO. 2006;54(8):611–5.

    Article  Google Scholar 

  48. Lueerssen K, et al. Optical characterization of vocal folds by OCT-based laryngoscopy—art. no. 64241O. Photon Ther Diagn III. 2007;6424:O4241.

    Google Scholar 

  49. Bibas AG, et al. 3-D optical coherence tomography of the laryngeal mucosa. Clin Otolaryngol Allied Sci. 2004;29(6):713–20.

    Article  CAS  PubMed  Google Scholar 

  50. Burns JA, et al. Imaging the mucosa of the human vocal fold with optical coherence tomography. Ann Otol Rhinol Laryngol. 2005;114(9):671–6.

    Article  PubMed  Google Scholar 

  51. Sergeev A, et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express. 1997;1(13):432–40.

    Article  CAS  PubMed  Google Scholar 

  52. Klein AM, et al. Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience. Ann Otol Rhinol Laryngol. 2006;115(4):277–84.

    Article  PubMed  Google Scholar 

  53. Sepehr A, et al. Optical coherence tomography of the larynx in the awake patient. Otolaryngol Head Neck Surg. 2008;138(4):425–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shakhov AV, et al. Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J Surg Oncol. 2001;77(4):253–8.

    Article  CAS  PubMed  Google Scholar 

  55. Armstrong WB, et al. Optical coherence tomography of laryngeal cancer. Laryngoscope. 2006;116(7):1107–13.

    Article  PubMed  Google Scholar 

  56. Kraft M, et al. Technique of optical coherence tomography of the larynx during microlaryngoscopy. Laryngoscope. 2007;117(5):950–2.

    Article  PubMed  Google Scholar 

  57. Kraft M, et al. Clinical value of optical coherence tomography in laryngology. Head Neck. 2008;30(12):1628–35.

    Article  PubMed  Google Scholar 

  58. Kraft M, et al. Significance of optical coherence tomography in the assessment of laryngeal lesions—art. no. 68421O. Photo Ther Diagn IV. 2008;6842:O8421.

    Google Scholar 

  59. Rubinstein M, et al. Optical coherence tomography of the larynx using the Niris system. J Otolaryngol Head Neck Surg. 2010;39(2):150–6.

    PubMed  PubMed Central  Google Scholar 

  60. Just T, et al. Optical coherence tomography allows for the reliable identification of laryngeal epithelial dysplasia and for precise biopsy: a clinicopathological study of 61 patients undergoing microlaryngoscopy. Laryngoscope. 2010;120(10):1964–70.

    Article  PubMed  Google Scholar 

  61. Vokes DE, et al. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope. Ann Otol Rhinol Laryngol. 2008;117(7):538–47.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo S, et al. Office-based optical coherence tomographic imaging of human vocal cords. J Biomed Opt. 2006;11(3):30501.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J.-F. Wong MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, G.K., Rubinstein, M., Betz, C., Wong, B.JF. (2016). Optical Coherence Tomography of Malignancies of the Head and Neck. In: Wong, BF., Ilgner, J. (eds) Biomedical Optics in Otorhinolaryngology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1758-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1758-7_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1757-0

  • Online ISBN: 978-1-4939-1758-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics