Optical Coherence Tomography of Malignancies of the Head and Neck

  • Giriraj K. Sharma
  • Marc Rubinstein
  • Christian Betz
  • Brian J.-F. Wong
Chapter

Abstract

Optical coherence tomography (OCT) is a minimally invasive optical imaging modality which produces high-resolution, three-dimensional (3D) images of biological tissue. In the last 10 years, biophotonics and optics research have led to the advancement of OCT technology and expansion of OCT applications within Otorhinolaryngology—Head and Neck Surgery. In vivo clinical studies have demonstrated the potential for OCT to perform minimally invasive diagnostic imaging and differentiation of premalignant and malignant lesions of the head and neck. This chapter reviews the research and clinical applications for OCT imaging of malignancy in the upper aerodigestive tract.

Keywords

Optical coherence tomography Cancer Precancerous Dysplasia Upper aerodigestive tract Oral cavity Pharynx Larynx 

References

  1. 1.
    American Cancer Society. Cancer facts & figures 2014. Atlanta: American Cancer Society; 2014.Google Scholar
  2. 2.
    Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist. 2010;15(9):994–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. Surveillance, Epidemiology, and End Results Program (SEER) Cancer Statistics Review, 1975–2011. 2014 [2014 Sept 10; 2014 Sept 20]. Available from: http://seer.cancer.gov/csr/1975_2011/.
  5. 5.
    Mashberg A, Feldman LJ. Clinical criteria for identifying early oral and oropharyngeal carcinoma: erythroplasia revisited. Am J Surg. 1988;156(4):273–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Lingen MW, et al. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44(1):10–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Huang D, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    de Boer JF, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Choma M, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94.CrossRefPubMedGoogle Scholar
  11. 11.
    de Boer JF, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22(12):934–6.CrossRefPubMedGoogle Scholar
  12. 12.
    de Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt. 2002;7(3):359–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Reibel J. Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med. 2003;14(1):47–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Walsh T, et al. Clinical assessment to screen for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults. Cochrane Database Syst Rev. 2013;11, CD010173.PubMedGoogle Scholar
  15. 15.
    Wilder-Smith P, et al. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35(4):269–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Matheny ES, et al. Optical coherence tomography of malignancy in hamster cheek pouches. J Biomed Opt. 2004;9(5):978–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilder-Smith P, et al. Noninvasive imaging of oral premalignancy and malignancy. J Biomed Opt. 2005;10(5):051601.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanna NM, et al. Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches. Photomed Laser Surg. 2006;24(3):402–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Graf RN, Brown WJ, Wax A. Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source. Opt Lett. 2008;33(12):1285–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Graf RN, et al. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt. 2009;14(6):064030.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kim CS, et al. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt. 2009;14(3):034008.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Park J, et al. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization. Biomed Opt Express. 2010;1(1):186–200.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ahn YC, et al. Multimodality approach to optical early detection and mapping of oral neoplasia. J Biomed Opt. 2011;16(7):076007.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pande P, et al. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch. J Biomed Opt. 2014;19(8):086022.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tsai MT, et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt. 2008;13(4):044012.CrossRefPubMedGoogle Scholar
  26. 26.
    Jerjes W, et al. In vitro examination of suspicious oral lesions using optical coherence tomography. Br J Oral Maxillofac Surg. 2010;48(1):18–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Adegun OK, et al. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Med Sci. 2012;27(4):795–804.CrossRefPubMedGoogle Scholar
  28. 28.
    Hamdoon Z, et al. Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 2012;4:29.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hamdoon Z, et al. Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study. Photodiagnosis Photodyn Ther. 2013;10(1):17–27.CrossRefPubMedGoogle Scholar
  30. 30.
    Feldchtein F, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3(6):239–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Ozawa N, et al. In vivo imaging of human labial glands using advanced optical coherence tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(3):425–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Prestin S, et al. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34(12):1777–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee CK, et al. Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express. 2012;3(7):1632–46.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Volgger V, et al. Evaluation of optical coherence tomography to discriminate lesions of the upper aerodigestive tract. Head Neck. 2013;35(11):1558–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen SF, et al. Oral cancer diagnosis with optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7227–9.PubMedGoogle Scholar
  36. 36.
    Ridgway JM, et al. In vivo optical coherence tomography of the human oral cavity and oropharynx. Arch Otolaryngol Head Neck Surg. 2006;132(10):1074–81.CrossRefPubMedGoogle Scholar
  37. 37.
    Tsai MT, et al. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express. 2008;16(20):15847–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsai MT, et al. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt. 2009;14(4):044028.CrossRefPubMedGoogle Scholar
  39. 39.
    Wilder-Smith P, et al. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41(5):353–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Braakhuis BJ, et al. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.PubMedGoogle Scholar
  42. 42.
    Barnes L, Tse L, Hunt JL, Brandwein-Gensler M, Urken M, Slootweg P, Gale N, Cardesa A, Zidar N, Boffetta P. Tumours of the hypopharynx, larynx and trachea: introduction. In: Eveson J, Barnes L, Reichart P, Sidransky D, editors. World health organization classification of tumours. Pathology and genetics of head and neck tumours. Lyon, France: IARC Press; 2005. p. 111–7.Google Scholar
  43. 43.
    Hirano M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr (Basel). 1974;26(2):89–94.CrossRefGoogle Scholar
  44. 44.
    Zeitels SM. Premalignant epithelium and microinvasive cancer of the vocal fold: the evolution of phonomicrosurgical management. Laryngoscope. 1995;105(3 Pt 2):1–51.CrossRefPubMedGoogle Scholar
  45. 45.
    Luerssen K, et al. Optical characterization of vocal folds with optical coherence tomography. Photon Ther Diagn. 2005;5686:328–32.CrossRefGoogle Scholar
  46. 46.
    Lurssen K, et al. Optical characterization of vocal folds using optical coherence tomography—art. no. 60781O. Photon Ther Diagn II. 2006;6078:O781.Google Scholar
  47. 47.
    Lurssen K, et al. Optical coherence tomography in the diagnosis of vocal folds. HNO. 2006;54(8):611–5.CrossRefGoogle Scholar
  48. 48.
    Lueerssen K, et al. Optical characterization of vocal folds by OCT-based laryngoscopy—art. no. 64241O. Photon Ther Diagn III. 2007;6424:O4241.Google Scholar
  49. 49.
    Bibas AG, et al. 3-D optical coherence tomography of the laryngeal mucosa. Clin Otolaryngol Allied Sci. 2004;29(6):713–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Burns JA, et al. Imaging the mucosa of the human vocal fold with optical coherence tomography. Ann Otol Rhinol Laryngol. 2005;114(9):671–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Sergeev A, et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express. 1997;1(13):432–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Klein AM, et al. Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience. Ann Otol Rhinol Laryngol. 2006;115(4):277–84.CrossRefPubMedGoogle Scholar
  53. 53.
    Sepehr A, et al. Optical coherence tomography of the larynx in the awake patient. Otolaryngol Head Neck Surg. 2008;138(4):425–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shakhov AV, et al. Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J Surg Oncol. 2001;77(4):253–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Armstrong WB, et al. Optical coherence tomography of laryngeal cancer. Laryngoscope. 2006;116(7):1107–13.CrossRefPubMedGoogle Scholar
  56. 56.
    Kraft M, et al. Technique of optical coherence tomography of the larynx during microlaryngoscopy. Laryngoscope. 2007;117(5):950–2.CrossRefPubMedGoogle Scholar
  57. 57.
    Kraft M, et al. Clinical value of optical coherence tomography in laryngology. Head Neck. 2008;30(12):1628–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Kraft M, et al. Significance of optical coherence tomography in the assessment of laryngeal lesions—art. no. 68421O. Photo Ther Diagn IV. 2008;6842:O8421.Google Scholar
  59. 59.
    Rubinstein M, et al. Optical coherence tomography of the larynx using the Niris system. J Otolaryngol Head Neck Surg. 2010;39(2):150–6.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Just T, et al. Optical coherence tomography allows for the reliable identification of laryngeal epithelial dysplasia and for precise biopsy: a clinicopathological study of 61 patients undergoing microlaryngoscopy. Laryngoscope. 2010;120(10):1964–70.CrossRefPubMedGoogle Scholar
  61. 61.
    Vokes DE, et al. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope. Ann Otol Rhinol Laryngol. 2008;117(7):538–47.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Guo S, et al. Office-based optical coherence tomographic imaging of human vocal cords. J Biomed Opt. 2006;11(3):30501.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Giriraj K. Sharma
    • 1
  • Marc Rubinstein
    • 2
  • Christian Betz
    • 4
  • Brian J.-F. Wong
    • 3
  1. 1.Department of Otolaryngology—Head and Neck SurgeryUC Irvine Medical CenterOrangeUSA
  2. 2.The Beckman Laser Institute, Department of OtorhinolaryngologyKlinikum der Universität MünchenMunichGermany
  3. 3.The Beckman Laser Institute, Dept of Oto, MunichIrvineUSA
  4. 4.Department of OtorhinolaryngologMunich University HospitalMunichUSA

Personalised recommendations