Skip to main content

Optical Coherence Tomography

  • Chapter
  • First Online:
  • 1015 Accesses

Abstract

Optical coherence tomography is a noninvasive optical imaging modality that is rapidly gaining adoption in many clinical applications. OCT is capable of providing high-speed three-dimensional cross-sectional views into biological tissues with micrometer-scale resolutions. In this chapter, we will review the physical principles behind OCT starting early time-domain-based systems and then discuss the development of more recent high-speed Fourier-domain OCT systems. We will then discuss clinical utilization of OCT via two functional developments: Doppler-based OCT for the quantification of particulate flow rates such as blood flow and optical coherence elastography for mapping of tissue mechanical properties. Finally, we will discuss the development of endoscopic-based OCT for in vivo imaging within internal lumens such as the human airway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang D, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Izatt JA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9.

    Article  CAS  PubMed  Google Scholar 

  3. Fercher AF. Optical coherence tomography. J Biomed Opt. 1996;1:157–73.

    Article  CAS  PubMed  Google Scholar 

  4. Drexler W, Fujimoto JG, editors. Optical coherence tomography: technology and applications. Berlin: Springer; 2008.

    Google Scholar 

  5. Fercher AF, et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117:43–8.

    Article  CAS  Google Scholar 

  6. Wojtkowski M, et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7:457–63.

    Article  PubMed  Google Scholar 

  7. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22:340–2.

    Article  CAS  PubMed  Google Scholar 

  8. Golubovic B, et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt Lett. 1997;22(22):1704–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett. 1997;22(14):1119–21.

    Article  CAS  PubMed  Google Scholar 

  10. Izatt JA, et al. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett. 1997;22:1439–41.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett. 2000;25(2):114–6.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, et al. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt Lett. 2000;25:1358–60.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, et al. Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J Sel Top Quantum Electron. 2001;7:931–5.

    Article  CAS  Google Scholar 

  14. Leitgeb RA, et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express. 2003;11:3116–21.

    Article  PubMed  Google Scholar 

  15. Wang L, et al. Frequency domain Phase-resolved optical Doppler and Doppler variance tomography. Opt Commun. 2004;242:345–7.

    Article  CAS  Google Scholar 

  16. Zhang J, Chen Z. In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. Opt Express. 2005;13:7449–57.

    Article  PubMed  Google Scholar 

  17. Yang VX, et al. Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt Commun. 2002;208:209–14.

    Article  CAS  Google Scholar 

  18. Liu G, et al. Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Opt Express. 2011;19(12):11429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koudounarakis E, et al. Synchronous multifocal medullary and papillary thyroid microcarcinoma detected by elastography. Int J Surg Case Rep. 2014;5(1):5–7.

    Article  PubMed  Google Scholar 

  20. Fodor D. The utility of elastography and CEUS for the differentiation between benign and malignant cervical lymphadenopathy. Three cases report. Med Ultrason. 2013;15(1):63–6.

    Article  PubMed  Google Scholar 

  21. Lyshchik A, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237(1):202–11.

    Article  PubMed  Google Scholar 

  22. Schmitt JM. OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express. 1998;3(6):199–211.

    Article  CAS  PubMed  Google Scholar 

  23. Qi W, et al. Phase-resolved acoustic radiation force optical coherence elastography. J Biomed Opt. 2012;17(11):110505.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Armstrong J, et al. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography. Opt Express. 2003;11(15):1817–26.

    Article  PubMed  Google Scholar 

  25. Lau B, et al. Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways. Opt Express. 2010;18(26):27173–80.

    Article  PubMed  Google Scholar 

  26. Ridgway JM, et al. Optical coherence tomography of the newborn airway. Ann Otol Rhinol Laryngol. 2008;117(5):327–34 (Cover story).

    PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Nelson JS, Chen Z. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Opt Lett. 2005;30(2):147–9.

    Article  PubMed  Google Scholar 

  28. Yun S, et al. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt Express. 2004;12(20):4822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davis AM, Choma MA, Izatt JA. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. J Biomed Opt. 2005;10(6):064005.

    Article  PubMed  Google Scholar 

  30. Jing J, et al. High-speed upper-airway imaging using full-range optical coherence tomography. J Biomed Opt. 2012;17(11):110507.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Patel R, Dailey S, Bless D. Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders. Ann Otol Rhinol Laryngol. 2008;117(6):413–24.

    Article  PubMed  Google Scholar 

  32. Lohscheller J, et al. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans Med Imaging. 2008;27(3):300–9.

    Article  PubMed  Google Scholar 

  33. Lohscheller J, Eysholdt U. Phonovibrogram visualization of entire vocal fold dynamics. Laryngoscope. 2008;118(4):753–8.

    Article  PubMed  Google Scholar 

  34. Rubinstein M, et al. Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography. J Biomed Opt. 2009;14(6):064020.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu G, et al. Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT. Opt Express. 2011;19(12):11880–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Potsaid B, et al. MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging. 2012.

    Google Scholar 

  37. Bonesi M, et al. Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. Opt Express. 2014;22(3):2632–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge grant support from the BEST IGERT program funded by the National Science Foundation DGE-1144901, the National Institutes of Health (R01EB-10090, R01EY-021519, R01HL-105215, R01HL-103764, P41EB-015890), the Air Force Office of Scientific Research (FA9550-10-1-0538), and the Beckman Laser Institute Endowment. Dr. Chen has a financial interest in OCT Medical Imaging, Inc., which, however, did not support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jing, J., Chen, Z. (2016). Optical Coherence Tomography. In: Wong, BF., Ilgner, J. (eds) Biomedical Optics in Otorhinolaryngology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1758-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1758-7_32

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1757-0

  • Online ISBN: 978-1-4939-1758-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics