Fluorescence and Reflectance Spectroscopy for Detection of Oral Dysplasia and Cancer

  • Richard A. Schwarz
  • Rebecca R. Richards-Kortum
  • Ann M. Gillenwater


The development and progression of neoplasia in the oral cavity lead to measurable changes in the optical properties of oral tissue. These alterations can be detected using noninvasive optical techniques, potentially aiding in early detection and diagnosis. Various spectroscopic methods have been reported for detection of oral dysplasia and cancer. This chapter focuses on fluorescence spectroscopy, in which narrowband illumination light is used to excite endogenous fluorophores, and reflectance spectroscopy, in which broadband (white) illumination light is used to interrogate the elastic scattering properties and absorption properties of tissue.


Spectroscopy Diagnosis Cancer Fluorescence Reflectance 


  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.CrossRefPubMedGoogle Scholar
  3. 3.
    Kalavrezos N, Bhandari R. Current trends and future perspectives in the surgical management of oral cancer. Oral Oncol. 2010;46:429–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Ow TJ, Myers JN. Current management of advanced resectable oral cavity squamous cell carcinoma. Clin Exp Otorhinolaryngol. 2011;4(1):1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rapidis AD, Gullane P, Langdon JD, Lefebvre JL, Scully C, Shah JP. Major advances in the knowledge and understanding of the epidemiology, aetiopathogenesis, diagnosis, management and prognosis of oral cancer. Oral Oncol. 2009;45:299–300.CrossRefPubMedGoogle Scholar
  6. 6.
    Petersen PE. Oral cancer prevention and control—the approach of the World Health Organization. Oral Oncol. 2009;45:454–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44:10–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Fedele S. Diagnostic aids in the screening of oral cancer. Head Neck Oncol. 2009;1:5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ho MW, Risk JM, Woolgar JA, et al. The clinical determinants of malignant transformation in oral epithelial dysplasia. Oral Oncol. 2012;48:969–76.CrossRefPubMedGoogle Scholar
  10. 10.
    Eckardt A, Barth EL, Kokemueller H, Wegener G. Recurrent carcinoma of the head and neck: treatment strategies and survival analysis in a 20-year period. Oral Oncol. 2004;40:427–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Richards-Kortum R, Sevick-Muraca E. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem. 1996;47:555–606.CrossRefPubMedGoogle Scholar
  12. 12.
    Fryen A, Glanz H, Lohmann W, Dreyer T, Bohle RM. Significance of autofluorescence for the optical demarcation of field cancerisation in the upper aerodigestive tract. Acta Otolaryngol. 1997;117:316–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Takatani S, Graham MD. Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Trans Biomed Eng. 1979;26(12):656–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Amelink A, Christiaanse T, Sterenborg HJCM. Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation. Opt Lett. 2009;34(10):1525–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Mourant JR, Canpolat M, Brocker C, et al. Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J Biomed Opt. 2000;5(2):131–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Backman V, Gopal V, Kalashnikov M, et al. Measuring cellular structure at submicrometer scale with light scattering spectroscopy. IEEE J Sel Top Quantum Electron. 2001;7(6):887–93.CrossRefGoogle Scholar
  17. 17.
    Policard A. Etude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood. C R Soc Biol (Paris). 1924;91:1423–4.Google Scholar
  18. 18.
    Chance B, Thorell B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem. 1959;234:3044–50.PubMedGoogle Scholar
  19. 19.
    Chance B, Cohen P, Jobsis F, Schoener B. Intracellular oxidation-reduction states in vivo. Science. 1962;137(3529):499–508.CrossRefPubMedGoogle Scholar
  20. 20.
    Alfano RR, Tata DB, Cordero J, Tomashefsky P, Longo FW, Alfano MA. Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron. 1984;20(12):1507–11.CrossRefGoogle Scholar
  21. 21.
    Alfano RR, Tang GC, Pradhan A, Lam W, Choy DSJ, Opher E. Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J Quantum Electron. 1987;23(10):1806–11.CrossRefGoogle Scholar
  22. 22.
    Bigio IJ, Bown SG. Spectroscopic sensing of cancer and cancer therapy. Cancer Biol Ther. 2004;3(3):259–67.CrossRefPubMedGoogle Scholar
  23. 23.
    Mahadevan-Jansen A, Richards-Kortum R. Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt. 1996;1(1):31–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Marcu L. Fluorescence lifetime techniques in medical applications. Ann Biomed Eng. 2012;40(2):304–31.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gillenwater A, Jacob R, Richards-Kortum R. Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia. Head Neck. 1998;20(6):556–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Inaguma M, Hashimoto K. Porphyrin-like fluorescence in oral cancer. Cancer. 1999;86:2201–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res. 2008;14(8):2396–404.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Prahl SA (2013) Optical absorption of hemoglobin. Available at: Accessibility verified 12 Dec 2013.
  29. 29.
    Zheng W, Li D, Zeng Y, Luo Y, Qu JY. Two-photon excited hemoglobin fluorescence. Biomed Opt Express. 2010;2(1):71–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tunnell JW, Desjardins AE, Galindo L, et al. Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia. Technol Cancer Res Treat. 2003;2(6):505–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Amelink A, Kaspers OP, Sterenborg HJCM, van der Wal JE, Roodenburg JLN, Witjes MJH. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral Oncol. 2008;44:65–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Utzinger U, Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt. 2003;8(1):121–47.CrossRefPubMedGoogle Scholar
  33. 33.
    Baran TM, Fenn MC, Foster TH. Determination of optical properties by interstitial white light spectroscopy using a custom fiber optic probe. J Biomed Opt. 2013;18(10):107007.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pfefer TJ, Schomacker KT, Ediger MN, Nishioka NS. Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl Opt. 2002;41(22):4712–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Pfefer TJ, Agrawal A, Drezek RA. Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy. J Biomed Opt. 2005;10(4):044016.CrossRefGoogle Scholar
  36. 36.
    Schwarz RA, Gao W, Daye D, Williams MD, Richards-Kortum R, Gillenwater AM. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl Opt. 2008;47(6):825–34.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Roblyer D, Kurachi C, Stepanek V, et al. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev Res (Phila). 2009;2(5):423–31.CrossRefGoogle Scholar
  38. 38.
    Hielscher AH, Kim HK, Klose AD. Forward models of light transport in biological tissue. In: Boas DA, Pitris C, Ramanujam N, editors. Handbook of biomedical optics. Boca Raton, FL: CRC Press; 2011. p. 319–36.CrossRefGoogle Scholar
  39. 39.
    Hull EL, Foster TH. Steady-state reflectance spectroscopy in the P3 approximation. J Opt Soc Am A. 2001;18(3):584–99.CrossRefGoogle Scholar
  40. 40.
    Jacques SL, Pogue BW. Tutorial on diffuse light transport. J Biomed Opt. 2008;13(4):041302.CrossRefPubMedGoogle Scholar
  41. 41.
    Patterson MS, Chance B, Wilson BC. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl Opt. 1989;28(12):2331–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Arridge SR. Optical tomography in medical imaging. Inverse Prob. 1999;15:R41–93.CrossRefGoogle Scholar
  44. 44.
    Hielscher AH, Alcouffe RE, Barbour RL. Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys Med Biol. 1998;43:1285–302.CrossRefPubMedGoogle Scholar
  45. 45.
    Flock ST, Patterson MS, Wilson BC, Wyman DR. Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng. 1989;36(12):1162–8.CrossRefGoogle Scholar
  46. 46.
    Zhu C, Liu Q. Review of Monte Carlo modeling of light transport in tissues. J Biomed Opt. 2013;18(5):050902.CrossRefGoogle Scholar
  47. 47.
    Pavlova I, Weber CR, Schwarz RA, Williams M, El-Naggar A, Gillenwater A, Richards-Kortum R. Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer. J Biomed Opt. 2008;13(6):064012.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    van Staveren HJ, van Veen RLP, Speelman OC, Witjes MJH, Star WM, Roodenburg JLN. Classification of clinical autofluorescence spectra of oral leukoplakia using an artificial neural network: a pilot study. Oral Oncol. 2000;36:286–93.CrossRefPubMedGoogle Scholar
  49. 49.
    de Veld DCG, Skurichina M, Witjes MJH, Duin RPW, Sterenborg HJCM, Roodenburg JLN. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J Biomed Opt. 2004;9(5):940–50.CrossRefPubMedGoogle Scholar
  50. 50.
    Majumder SK, Gupta A, Gupta S, Ghosh N, Gupta PK. Multi-class classification algorithm for optical diagnosis of oral cancer. J Photochem Photobiol B. 2006;85:109–17.CrossRefPubMedGoogle Scholar
  51. 51.
    Kolli VR, Savage HE, Yao TJ, Schantz SP. Native cellular fluorescence of neoplastic upper aerodigestive mucosa. Arch Otolaryngol Head Neck Surg. 1995;121(11):1287–92.CrossRefPubMedGoogle Scholar
  52. 52.
    Dhingra JK, Perrault DF, McMillan K, et al. Early diagnosis of upper aerodigestive tract cancer by autofluorescence. Arch Otolaryngol Head Neck Surg. 1996;122(11):1181–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Betz CS, Mehlmann M, Rick K, et al. Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer. Lasers Surg Med. 1999;25:323–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Heintzelman DL, Utzinger U, Fuchs H, et al. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol. 2000;72(1):103–13.CrossRefPubMedGoogle Scholar
  55. 55.
    Lau C, Šćepanović O, Mirkovic J, et al. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy. J Biomed Opt. 2009;14(2):024031.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Müller MG, Valdez TA, Georgakoudi I, et al. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer. 2003;97:1681–92.CrossRefPubMedGoogle Scholar
  57. 57.
    de Veld DCG, Skurichina M, Witjes MJH, Duin RPW, Sterenborg HJCM, Roodenburg JLN. Autofluorescence and diffuse reflectance spectroscopy for oral oncology. Lasers Surg Med. 2005;36:356–64.CrossRefPubMedGoogle Scholar
  58. 58.
    Nieman LT, Kan CW, Gillenwater A, Markey MK, Sokolov K. Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial. J Biomed Opt. 2008;13(2):024011.CrossRefPubMedGoogle Scholar
  59. 59.
    Schwarz RA, Gao W, Weber CR, et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer. 2009;115:1669–79.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McGee S, Mardirossian V, Elackattu A, et al. Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy. Ann Otol Rhinol Laryngol. 2009;118(11):817–26.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Amelink A, Sterenborg HJCM, Roodenburg JLN, Witjes MJH. Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy. Oral Oncol. 2011;47:1165–70.CrossRefPubMedGoogle Scholar
  62. 62.
    Roblyer D, Richards-Kortum R, Sokolov K, et al. Multispectral optical imaging device for in vivo detection of oral neoplasia. J Biomed Opt. 2008;13(2):024019.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pierce M, Yu D, Richards-Kortum R. High-resolution fiber-optic microendoscopy for in situ cellular imaging. J Vis Exp. 2011;47:e2306. doi: 10.3791/2306.Google Scholar
  64. 64.
    Lane PM, Gilhuly T, Whitehead P, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11(2):024006.CrossRefPubMedGoogle Scholar
  65. 65.
    Poh CF, Ng SP, Williams PM, et al. Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck. 2007;29:71–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Awan KH, Morgan PR, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscopeTM) in the detection of oral potentially malignant disorders and benign keratoses. Oral Oncol. 2011;47:274–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Onizawa K, Yoshida H, Saginoya H. Chromatic analysis of autofluorescence emitted from squamous cell carcinomas arising in the oral cavity: a preliminary study. Int J Oral Maxillofac Surg. 2000;29:42–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Bedard N, Schwarz RA, Hu A, et al. Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study. Biomed Opt Express. 2013;4(6):938–49.CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Marín NM, MacKinnon N, MacAulay C, et al. Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis. J Biomed Opt. 2006;11(1):014010.CrossRefPubMedGoogle Scholar
  70. 70.
    de Veld DCG, Witjes MJH, Sterenborg HJCM, Roodenburg JLN. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 2005;41:117–31.CrossRefPubMedGoogle Scholar
  71. 71.
    Pavlova I, Weber CR, Schwarz RA, Williams MD, Gillenwater AM, Richards-Kortum R. Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties. J Biomed Opt. 2009;14(1):014009.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gray LV, Schwarz RA, Richards-Kortum R. Imaging as a tool for global cancer control. Comput Med Imaging Graph. 2013;37:195–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Richard A. Schwarz
    • 1
  • Rebecca R. Richards-Kortum
    • 1
  • Ann M. Gillenwater
    • 2
  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Department of Head and Neck SurgeryUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations