Skip to main content

Tumors of Lymphoid and Hematopoietic Tissues

  • Chapter
  • First Online:
  • 2184 Accesses

Abstract

Hematolymphoid neoplasms represent the third most common malignancy in children and young adults. These are heterogeneous diseases that can involve lymph nodes and extranodal sites with variable clinical presentations. Appropriate imaging studies combined with sufficient diagnostic material for pathological evaluation are required for an accurate diagnosis to be established. Additionally, radiological studies are now the standard of care for lymphoma staging and are also essential in evaluating treatment response for some lymphoid tumors. The aim of this chapter is to provide relevant and current knowledge on the combination of radiologic and pathologic studies as part of the evaluation and diagnosis of common childhood hematolymphoid tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nickoloff EL. AAPM/RSNA physics tutorial for residents: physics of flat-panel fluoroscopy systems: survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more. Radiographics. 2011;31:591–602.

    PubMed  Google Scholar 

  2. Navarro OM. Soft tissue masses in children. Radiol Clin North Am. 2011;49:1235–59. vi–vii.

    PubMed  Google Scholar 

  3. McCarville MB. Contrast-enhanced sonography in pediatrics. Pediatr Radiol. 2011;41 Suppl 1:S238–42.

    PubMed  Google Scholar 

  4. Dudea SM, Botar-Jid C, Dumitriu D, et al. Differentiating benign from malignant superficial lymph nodes with sonoelastography. Med Ultrason. 2013;15:132–9.

    PubMed  Google Scholar 

  5. Kostakoglu L, Schoder H, Johnson JL, et al. Interim [(18)F]fluorodeoxyglucose positron emission tomography imaging in stage I-II non-bulky Hodgkin lymphoma: would using combined positron emission tomography and computed tomography criteria better predict response than each test alone? Leuk Lymphoma. 2012;53:2143–50.

    CAS  PubMed  Google Scholar 

  6. Schwartz CL, Friedman DL, McCarten K, et al. Predictors of early response and event-free survival in Hodgkin lymphoma (HL): PET versus CT imaging. J Clin Oncol. 2011;29:8006.

    Google Scholar 

  7. Callahan MJ, Poznauskis L, Zurakowski D, et al. Nonionic iodinated intravenous contrast material-related reactions: incidence in large urban children's hospital-retrospective analysis of data in 12,494 patients. Radiology. 2009;250:674–81.

    PubMed  Google Scholar 

  8. ACR Manual on Contrast Media, Version 9, in Radiology ACo, editor. American College of Radiology; 2013

    Google Scholar 

  9. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    CAS  PubMed  Google Scholar 

  10. Mettler Jr FA, Huda W, Yoshizumi TT, et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.

    PubMed  Google Scholar 

  11. Brenner DJ. Slowing the increase in the population dose resulting from CT scans. Radiat Res. 2010;174:809–15.

    CAS  PubMed  Google Scholar 

  12. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.

    PubMed Central  PubMed  Google Scholar 

  13. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    PubMed Central  PubMed  Google Scholar 

  14. Krille L, Zeeb H, Jahnen A, et al. Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys. 2012;51:103–11.

    PubMed  Google Scholar 

  15. Nievelstein RA, Quarles van Ufford HM, Kwee TC, et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22:1946–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. McCollough CH, Bruesewitz MR, Kofler Jr JM. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006;26:503–12.

    PubMed  Google Scholar 

  17. Pooley RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics. 2005;25:1087–99.

    PubMed  Google Scholar 

  18. Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175:494–8.

    CAS  PubMed  Google Scholar 

  19. Pandharipande PV, Mora JT, Uppot RN, et al. Lymphotropic nanoparticle-enhanced MRI for independent prediction of lymph node malignancy: a logistic regression model. Am J Roentgenol. 2009;193:W230–7.

    Google Scholar 

  20. Kwee TC, Takahara T, Vermoolen MA, et al. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol. 2010;40(10):1592–602.

    PubMed Central  PubMed  Google Scholar 

  21. Vermoolen MA, Kwee TC, Akkerman EM, et al. Whole-body MRI, including diffusion-weighted imaging, compared to FDG-PET for staging Hodgkin’s lymphoma – initial experience. Pediatr Radiol. 2010;40:1097.

    Google Scholar 

  22. Punwani S, Taylor SA, Saad ZZ, et al. Diffusion-weighted MRI of lymphoma: prognostic utility and implications for PET/MRI? Eur J Nucl Med Mol Imaging. 2013;40:373–85.

    PubMed  Google Scholar 

  23. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.

    Google Scholar 

  24. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Mir N, Sohaib SA, Collins D, et al. Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol. 2010;54:358–64.

    CAS  PubMed  Google Scholar 

  26. Roy C, Bierry G, Matau A, et al. Value of diffusion-weighted imaging to detect small malignant pelvic lymph nodes at 3T. Eur Radiol. 2010;20:1803–11.

    PubMed  Google Scholar 

  27. Kaewlai R, Abujudeh H. Nephrogenic systemic fibrosis. Am J Roentgenol. 2012;199:W17–23.

    Google Scholar 

  28. Treves ST. Pediatric nuclear medicine/PET. Seacus, NJ: Springer; 2007.

    Google Scholar 

  29. Kelly KM, Hodgson D, Appel B, et al. Children’s Oncology Group’s 2013 blueprint for research: Hodgkin lymphoma. Pediatr Blood Cancer. 2013;60:972–8.

    PubMed  Google Scholar 

  30. Kostakoglu L, Cheson BD. State-of-the-art research on lymphomas: role of molecular imaging for staging, prognostic evaluation, and treatment response. Front Oncol. 2013;3:212.

    PubMed Central  PubMed  Google Scholar 

  31. Zhuang H, Yu JQ, Alavi A. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am. 2005;43:121–34.

    PubMed  Google Scholar 

  32. Vermoolen MA, Kersten MJ, Fijnheer R, et al. Magnetic resonance imaging of malignant lymphoma. Expert Rev Hematol. 2011;4:161–71.

    PubMed  Google Scholar 

  33. Oguz A, Karadeniz C, Temel EA, et al. Evaluation of peripheral lymphadenopathy in children. Pediatr Hematol Oncol. 2006;23:549–61.

    PubMed  Google Scholar 

  34. Twist CJ, Link MP. Assessment of lymphadenopathy in children. Pediatr Clin North Am. 2002;49:1009–25.

    PubMed  Google Scholar 

  35. Rosado FG, Stratton CW, Mosse CA. Clinicopathologic correlation of epidemiologic and histopathologic features of pediatric bacterial lymphadenitis. Arch Pathol Lab Med. 2011;135:1490–3.

    PubMed  Google Scholar 

  36. Monaco SE, Khalbuss WE, Pantanowitz L. Benign non-infectious causes of lymphadenopathy: a review of cytomorphology and differential diagnosis. Diagn Cytopathol. 2012;40:925–38.

    PubMed  Google Scholar 

  37. Chapel H. Classification of primary immunodeficiency diseases by the International Union of Immunological Societies (IUIS) Expert Committee on Primary Immunodeficiency 2011. Clin Exp Immunol. 2012;168:58–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. International Union of Immunological Societies Expert Committee on PrimaryI, Notarangelo LD, Fischer A, et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124:1161–78.

    Google Scholar 

  39. Filipovich AH, Mathur A, Kamat D, et al. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 1992;52:5465s–7.

    CAS  PubMed  Google Scholar 

  40. Terasawa T, Lau J, Bardet S, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin's lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol. 2009;27:1906–14.

    PubMed  Google Scholar 

  41. Ng SB, Khoury JD. Epstein-Barr virus in lymphoproliferative processes: an update for the diagnostic pathologist. Adv Anat Pathol. 2009;16:40–55.

    CAS  PubMed  Google Scholar 

  42. Hollingsworth CL. Thoracic disorders in the immunocompromised child. Radiol Clin North Am. 2005;43:435–47.

    PubMed  Google Scholar 

  43. Yin EZ, Frush DP, Donnelly LF, et al. Primary immunodeficiency disorders in pediatric patients: clinical features and imaging findings. Am J Roentgenol. 2001;176:1541–52.

    CAS  Google Scholar 

  44. Cotelingam JD, Witebsky FG, Hsu SM, et al. Malignant lymphoma in patients with the Wiskott-Aldrich syndrome. Cancer Invest. 1985;3:515–22.

    CAS  PubMed  Google Scholar 

  45. Taylor AM, Metcalfe JA, Thick J, et al. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–38.

    CAS  PubMed  Google Scholar 

  46. Notarangelo L, Casanova JL, Conley ME, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee Meeting in Budapest, 2005. J Allergy Clin Immunol. 2006;117:883–96.

    PubMed  Google Scholar 

  47. Safriel YI, Haller JO, Lefton DR, et al. Imaging of the brain in the HIV-positive child. Pediatr Radiol. 2000;30:725–32.

    CAS  PubMed  Google Scholar 

  48. Boyle GJ, Michaels MG, Webber SA, et al. Posttransplantation lymphoproliferative disorders in pediatric thoracic organ recipients. J Pediatr. 1997;131:309–13.

    CAS  PubMed  Google Scholar 

  49. Webber SA, Naftel DC, Fricker FJ, et al. Lymphoproliferative disorders after paediatric heart transplantation: a multi-institutional study. Lancet. 2006;367:233–9.

    PubMed  Google Scholar 

  50. von Falck C, Maecker B, Schirg E, et al. Post transplant lymphoproliferative disease in pediatric solid organ transplant patients: a possible role for [18F]-FDG-PET(/CT) in initial staging and therapy monitoring. Eur J Radiol. 2007;63:427–35.

    Google Scholar 

  51. Gurney JG, Davis S, Severson RK, et al. Trends in cancer incidence among children in the U.S. Cancer. 1996;78:532–41.

    CAS  PubMed  Google Scholar 

  52. Jaglowski SM, Linden E, Termuhlen AM, et al. Lymphoma in adolescents and young adults. Semin Oncol. 2009;36:381–418.

    CAS  PubMed  Google Scholar 

  53. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    CAS  PubMed  Google Scholar 

  54. Morton LM, Wang SS, Devesa SS, et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood. 2006;107:265–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334:1238–48.

    CAS  PubMed  Google Scholar 

  56. Gross TL, Perkins SL. Malignant non-Hodgkin lymphomas in children. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. p. 663–82.

    Google Scholar 

  57. Anghelescu DL, Burgoyne LL, Liu T, et al. Clinical and diagnostic imaging findings predict anesthetic complications in children presenting with malignant mediastinal masses. Paediatr Anaesth. 2007;17:1090–8.

    PubMed  Google Scholar 

  58. Shepherd SF, A'Hern RP, Pinkerton CR. Childhood T-cell lymphoblastic lymphoma-does early resolution of mediastinal mass predict for final outcome? The United Kingdom Children's Cancer Study Group (UKCCSG). Br J Cancer. 1995;72:752–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Termuhlen AM, Smith LM, Perkins SL, et al. Disseminated lymphoblastic lymphoma in children and adolescents: results of the COG A5971 trial: a report from the Children’s Oncology Group. Br J Haematol. 2013;162:792–801.

    CAS  PubMed  Google Scholar 

  60. Khoury JD. Ewing sarcoma family of tumors. Adv Anat Pathol. 2005;12:212–20.

    PubMed  Google Scholar 

  61. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Cairo MS, Raetz E, Lim MS, et al. Childhood and adolescent non-Hodgkin lymphoma: new insights in biology and critical challenges for the future. Pediatr Blood Cancer. 2005;45:753–69.

    PubMed  Google Scholar 

  63. Oschlies I, Burkhardt B, Chassagne-Clement C, et al. Diagnosis and immunophenotype of 188 pediatric lymphoblastic lymphomas treated within a randomized prospective trial: experiences and preliminary recommendations from the European childhood lymphoma pathology panel. Am J Surg Pathol. 2011;35:836–44.

    PubMed  Google Scholar 

  64. Hochberg J, Waxman IM, Kelly KM, et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144:24–40.

    PubMed  Google Scholar 

  65. Khoury JD, Jones D, Yared MA, et al. Bone marrow involvement in patients with nodular lymphocyte predominant Hodgkin lymphoma. Am J Surg Pathol. 2004;28:489–95.

    PubMed  Google Scholar 

  66. Carbone A, Spina M, Gloghini A, et al. Classical Hodgkin’s lymphoma arising in different host's conditions: pathobiology parameters, therapeutic options, and outcome. Am J Hematol. 2011;86:170–9.

    PubMed  Google Scholar 

  67. Bradley AJ, Carrington BM, Lawrance JA, et al. Assessment and significance of mediastinal bulk in Hodgkin’s disease: comparison between computed tomography and chest radiography. J Clin Oncol. 1999;17:2493–8.

    CAS  PubMed  Google Scholar 

  68. Shamberger RC. Preanesthetic evaluation of children with anterior mediastinal masses. Semin Pediatr Surg. 1999;8:61–8.

    CAS  PubMed  Google Scholar 

  69. Metzger ML, Krasin MJ, Hudson MM, et al. Hodgkin Lymphoma. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia, PA: Lippincott, Williams and Wilkens; 2011. p. 638–62.

    Google Scholar 

  70. Paes FM, Kalkanis DG, Sideras PA, et al. FDG PET/CT of extranodal involvement in non-Hodgkin lymphoma and Hodgkin disease. Radiographics. 2010;30:269–91.

    PubMed  Google Scholar 

  71. Purz S, Mauz-Korholz C, Korholz D, et al. [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2011;29:3523–8.

    PubMed  Google Scholar 

  72. Kluge R, Kurch L, Montravers F, et al. FDG PET/CT in children and adolescents with lymphoma. Pediatr Radiol. 2013;43:406–17.

    PubMed  Google Scholar 

  73. Furth C, Denecke T, Steffen I, et al. Correlative imaging strategies implementing CT, MRI, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol. 2006;28:501–12.

    PubMed  Google Scholar 

  74. Furth C, Steffen IG, Amthauer H, et al. Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin's lymphoma: analysis of a prospective multicenter trial. J Clin Oncol. 2009;27:4385–91.

    PubMed  Google Scholar 

  75. Gallamini A, Fiore F, Sorasio R, et al. Interim positron emission tomography scan in Hodgkin lymphoma: definitions, interpretation rules, and clinical validation. Leuk Lymphoma. 2009;50:1761–4.

    PubMed  Google Scholar 

  76. Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswolds meeting. J Clin Oncol. 1989;7:1630–6.

    CAS  PubMed  Google Scholar 

  77. Freed J, Kelly KM. Current approaches to the management of pediatric Hodgkin lymphoma. Paediatr Drugs. 2010;12:85–98.

    PubMed  Google Scholar 

  78. Metzger ML, Hudson MM. Balancing efficacy and safety in the treatment of adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2009;27:6071–3.

    PubMed  Google Scholar 

  79. Metzger ML, Hudson MM, Krasin MJ, et al. Initial response to salvage therapy determines prognosis in relapsed pediatric Hodgkin lymphoma patients. Cancer. 2010;116:4376–84.

    PubMed Central  PubMed  Google Scholar 

  80. Metzger ML, Weinstein HJ, Hudson MM, et al. Association between radiotherapy vs no radiotherapy based on early response to VAMP chemotherapy and survival among children with favorable-risk Hodgkin lymphoma. JAMA. 2012;307:2609–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Hutchings M. How does PET/CT help in selecting therapy for patients with Hodgkin lymphoma? Hematol Am Soc Hematol Educ Program. 2012;2012:322–7.

    Google Scholar 

  82. Kostakoglu L, Gallamini A. Interim 18F-FDG PET in Hodgkin lymphoma: would PET-adapted clinical trials lead to a paradigm shift? J Nucl Med. 2013;54:1082–93.

    CAS  PubMed  Google Scholar 

  83. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    PubMed  Google Scholar 

  84. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.

    PubMed  Google Scholar 

  85. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014. pii: JCO.2013.53.5229. PMID: 25113771, [Epub ahead of print].

    Google Scholar 

  86. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014. pii: JCO.2013.54.8800. PMID: 25113753, [Epub ahead of print].

    Google Scholar 

  87. Meignan M, Gallamini A, Itti E et al. Report on the Third International Workshop on Interim Positron Emission Tomography in Lymphoma held in Menton, France, 26–27 September 2011 and Menton 2011 consensus. Leuk Lymphoma 2012;53:1876-81.

    Google Scholar 

  88. Voss SD, Chen L, Constine LS, et al. Surveillance computed tomography imaging and detection of relapse in intermediate- and advanced-stage pediatric Hodgkin’s lymphoma: a report from the Children's Oncology Group. J Clin Oncol. 2012;30:2635–40.

    PubMed  Google Scholar 

  89. Voss SD. Surveillance imaging in pediatric hodgkin lymphoma. Curr Hematol Malig Rep. 2013;8:218–25.

    PubMed  Google Scholar 

  90. Rathore N, Eissa HM, Margolin JF, et al. Pediatric Hodgkin lymphoma: are we over-scanning our patients? Pediatr Hematol Oncol. 2012;29:415–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Friedmann AM, Wolfson JA, Hudson MM, et al. Relapse after treatment of pediatric Hodgkin lymphoma: outcome and role of surveillance after end of therapy. Pediatr Blood Cancer. 2013;60:1458–63.

    PubMed Central  PubMed  Google Scholar 

  92. Venkataraman G, Mirza MK, Eichenauer DA, et al. Current status of prognostication in classical Hodgkin lymphoma. Br J Haematol. 2014;165:287–99.

    CAS  PubMed  Google Scholar 

  93. Deffenbacher KE, Iqbal J, Sanger W, et al. Molecular distinctions between pediatric and adult mature B-cell non-Hodgkin lymphomas identified through genomic profiling. Blood. 2012;119:3757–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Toma P, Granata C, Rossi A, et al. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27:1335–54.

    PubMed  Google Scholar 

  95. Burkhardt B, Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25:153–60.

    CAS  PubMed  Google Scholar 

  96. Gerrard M, Waxman IM, Sposto R, et al. Outcome and pathologic classification of children and adolescents with mediastinal large B-cell lymphoma treated with FAB/LMB96 mature B-NHL therapy. Blood. 2013;121:278–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Reiter A, Ferrando AA. Malignant lymphomas and lymphadenopathies. In: Orkin SH, Fisher DE, Look AT, et al., editors. Oncology of infancy and childhood. Philadelphia: Elsevier; 2009. p. 417–508.

    Google Scholar 

  98. Reiter A, Klapper W. Recent advances in the understanding and management of diffuse large B-cell lymphoma in children. Br J Haematol. 2008;142:329–47.

    CAS  PubMed  Google Scholar 

  99. Morin RD, Gascoyne RD. Newly identified mechanisms in B-cell non-Hodgkin lymphomas uncovered by next-generation sequencing. Semin Hematol. 2013;50:303–13.

    CAS  PubMed  Google Scholar 

  100. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    CAS  PubMed  Google Scholar 

  101. Oschlies I, Klapper W, Zimmermann M, et al. Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) Multicenter Trial. Blood. 2006;107:4047–52.

    CAS  PubMed  Google Scholar 

  102. Miles RR, Raphael M, McCarthy K, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: Report of the French-American-British (FAB) international study group. Pediatr Blood Cancer. 2008;51:369–74.

    PubMed Central  PubMed  Google Scholar 

  103. Sandlund JT. Burkitt lymphoma: staging and response evaluation. Br J Haematol. 2012;156:761–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Karantanis D, Durski JM, Lowe VJ, et al. 18F-FDG PET and PET/CT in Burkitt’s lymphoma. Eur J Radiol. 2010;75:e68–73.

    PubMed  Google Scholar 

  105. Leventaki V, Rodic V, Tripp SR, et al. TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases. Br J Haematol. 2012;158:763–71.

    CAS  PubMed  Google Scholar 

  106. Taddesse-Heath L, Pittaluga S, Sorbara L, et al. Marginal zone B-cell lymphoma in children and young adults. Am J Surg Pathol. 2003;27:522–31.

    PubMed  Google Scholar 

  107. Rizzo KA, Streubel B, Pittaluga S, et al. Marginal zone lymphomas in children and the young adult population; characterization of genetic aberrations by FISH and RT-PCR. Mod Pathol 23:866–73

    Google Scholar 

  108. Rizzo KA, Streubel B, Pittaluga S, et al. Marginal zone lymphomas in children and the young adult population; characterization of genetic aberrations by FISH and RT-PCR. Mod Pathol. 2010;23:866–73.

    CAS  PubMed  Google Scholar 

  109. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99:1959–64.

    CAS  PubMed  Google Scholar 

  110. Oschlies I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma – a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma–Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95:253–9.

    PubMed Central  PubMed  Google Scholar 

  111. Setty BA, Termuhlen AM. Rare pediatric non-hodgkin lymphoma. Curr Hematol Malig Rep. 2010;5:163–8.

    PubMed  Google Scholar 

  112. Hayashi D, Lee JC, Devenney-Cakir B, et al. Follicular non-Hodgkin’s lymphoma. Clin Radiol. 2010;65:408–20.

    CAS  PubMed  Google Scholar 

  113. Hofman MS, Hicks RJ. Imaging in follicular NHL. Best Pract Res Clin Haematol. 2011;24:165–77.

    CAS  PubMed  Google Scholar 

  114. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood 118:139–47

    Google Scholar 

  115. Lowe EJ, Gross TG. Anaplastic large cell lymphoma in children and adolescents. Pediatr Hematol Oncol. 2013;30:509–19.

    CAS  PubMed  Google Scholar 

  116. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111:1560–6.

    PubMed  Google Scholar 

  117. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Favara BE, Feller AC, Pauli M, et al. Contemporary classification of histiocytic disorders. The WHO Committee on Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol. 1997;29:157–66.

    CAS  PubMed  Google Scholar 

  119. Alston RD, Tatevossian RG, McNally RJ, et al. Incidence and survival of childhood Langerhans cell histiocytosis in Northwest England from 1954 to 1998. Pediatr Blood Cancer. 2007;48:555–60.

    CAS  PubMed  Google Scholar 

  120. Degar BA, Fleming MD, Rollins BJ. Histocytoses. In: Orkin SH, Fisher DE, Look AT, et al., editors. Oncology of infancy and childhood. Philadelphia, PA: Saunders Elsevier; 2009. p. 963–88.

    Google Scholar 

  121. Gadner H, Grois N, Arico M, et al. A randomized trial of treatment for multisystem Langerhans’ cell histiocytosis. J Pediatr. 2001;138:728–34.

    CAS  PubMed  Google Scholar 

  122. Gadner H, Grois N, Potschger U, et al. Improved outcome in multisystem Langerhans cell histiocytosis is associated with therapy intensification. Blood. 2008;111:2556–62.

    CAS  PubMed  Google Scholar 

  123. Mueller WP, Melzer HI, Schmid I, et al. The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging. 2013;40:356–63.

    PubMed  Google Scholar 

  124. Phillips M, Allen C, Gerson P, et al. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer. 2009;52:97–101.

    PubMed  Google Scholar 

  125. Kaste SC, Rodriguez-Galindo C, McCarville ME, et al. PET-CT in pediatric Langerhans cell histiocytosis. Pediatr Radiol. 2007;37:615–22.

    PubMed  Google Scholar 

  126. Janssen D, Harms D. Juvenile xanthogranuloma in childhood and adolescence: a clinicopathologic study of 129 patients from the kiel pediatric tumor registry. Am J Surg Pathol. 2005;29:21–8.

    PubMed  Google Scholar 

  127. Hoeger PH, Diaz C, Malone M, et al. Juvenile xanthogranuloma as a sequel to Langerhans cell histiocytosis: a report of three cases. Clin Exp Dermatol. 2001;26:391–4.

    CAS  PubMed  Google Scholar 

  128. Yu H, Kong J, Gu Y, et al. A child with coexistent juvenile xanthogranuloma and Langerhans cell histiocytosis. J Am Acad Dermatol. 2010;62:329–32.

    PubMed  Google Scholar 

  129. Zvulunov A, Barak Y, Metzker A. Juvenile xanthogranuloma, neurofibromatosis, and juvenile chronic myelogenous leukemia. World statistical analysis. Arch Dermatol. 1995;131:904–8.

    CAS  PubMed  Google Scholar 

  130. Aparicio G, Mollet J, Bartralot R, et al. Eruptive juvenile xanthogranuloma associated with relapsing acute lymphoblastic leukemia. Pediatr Dermatol. 2008;25:487–8.

    PubMed  Google Scholar 

  131. Reinhardt D, Creutzig U. Isolated myelosarcoma in children-update and review. Leuk Lymphoma. 2002;43:565–74.

    CAS  PubMed  Google Scholar 

  132. Dusenbery KE, Howells WB, Arthur DC, et al. Extramedullary leukemia in children with newly diagnosed acute myeloid leukemia: a report from the Children’s Cancer Group. J Pediatr Hematol Oncol. 2003;25:760–8.

    PubMed  Google Scholar 

  133. Guermazi A, Feger C, Rousselot P, et al. Granulocytic sarcoma (chloroma): imaging findings in adults and children. Am J Roentgenol. 2002;178:319–25.

    CAS  Google Scholar 

  134. Klco JM, Welch JS, Nguyen TT, et al. State of the art in myeloid sarcoma. Int J Lab Hematol. 2011;33:555–65.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan D. Voss M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leventaki, V., Khoury, J.D., Voss, S.D. (2015). Tumors of Lymphoid and Hematopoietic Tissues. In: Parham, D., Khoury, J., McCarville, M. (eds) Pediatric Malignancies: Pathology and Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1729-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1729-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1728-0

  • Online ISBN: 978-1-4939-1729-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics