Skip to main content

Soft Tissue Sarcomas

  • Chapter
  • First Online:

Abstract

Malignancies arising in connective tissue comprise a clinically important and histologically diverse category of pediatric cancers. These have traditionally been classified by presumed cell of origin or type of differentiation, with the caveat that some diagnoses originate from undefined cell types. Newer genetic data indicates that molecular perturbations, particularly translocations and their derivative chimeric fusions, correlate with histological types and better predict clinical behavior and outcome. Many diagnostic imaging techniques can be profitably applied to these tumors for the purposes of diagnosis, staging, and disease monitoring. These range from ultrasonography to newer positron emission tomography (PET) scans. Rhabdomyosarcomas constitute a large proportion of sarcomas in children, but in older children and adolescents, non-rhabdomyosarcomatous soft tissue sarcomas (NRSTS) predominate as a group. This review will cover classification, grading, morphological and genetic diagnosis, and diagnostic imaging features of these diverse lesions, Rarely adult types of sarcomas occur in children, but they will be included in this relatively brief chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fletcher CD. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology. 2006;48:3–12.

    CAS  PubMed  Google Scholar 

  2. Parham D, Pao W, Pratt C, et al. A histological grading system of prognostic significance for childhood – adolescent soft tissue sarcomas other than rhabdomyosarcoma. Mod Pathol. 1990;3:78A.

    Google Scholar 

  3. Pratt CB, Maurer HM, Gieser P, et al. Treatment of unresectable or metastatic pediatric soft tissue sarcomas with surgery, irradiation, and chemotherapy: a Pediatric Oncology Group study. Med Pediatr Oncol. 1998;30:201–9.

    CAS  PubMed  Google Scholar 

  4. Coindre JM, Trojani M, Contesso G, et al. Reproducibility of a histopathologic grading system for adult soft tissue sarcoma. Cancer. 1986;58:306–9.

    CAS  PubMed  Google Scholar 

  5. Khoury JD, Coffin CM, Spunt SL, et al. Grading of nonrhabdomyosarcoma soft tissue sarcoma in children and adolescents: a comparison of parameters used for the Federation Nationale des Centers de Lutte Contre le Cancer and Pediatric Oncology Group Systems. Cancer. 2010;116:2266–74.

    PubMed Central  PubMed  Google Scholar 

  6. Navarro OM. Soft tissue masses in children. Radiol Clin North Am. 2011;49:1235–59, vi–vii.

    PubMed  Google Scholar 

  7. Siegel MJ. Magnetic resonance imaging of musculoskeletal soft tissue masses. Radiol Clin North Am. 2001;39:701–20.

    CAS  PubMed  Google Scholar 

  8. Stein-Wexler R. MR imaging of soft tissue masses in children. Magn Reson Imaging Clin N Am. 2009;17:489–507. vi.

    PubMed  Google Scholar 

  9. Jadvar H, Connolly LP, Fahey FH, et al. PET and PET/CT in pediatric oncology. Semin Nucl Med. 2007;37:316–31.

    PubMed  Google Scholar 

  10. Harms D. Soft tissue sarcomas in the Kiel Pediatric Tumor Registry. Curr Top Pathol. 1995;89:31–45.

    CAS  PubMed  Google Scholar 

  11. Isaacs Jr H. Congenital and neonatal malignant tumors. A 28-year experience at Children's Hospital of Los Angeles. Am J Pediatr Hematol Oncol. 1987;9:121–9.

    PubMed  Google Scholar 

  12. Kogon B, Shehata B, Katzenstein H, et al. Primary congenital infantile fibrosarcoma of the heart: the first confirmed case. Ann Thorac Surg. 2011;91:1276–80.

    PubMed  Google Scholar 

  13. Vinnicombe SJ, Hall CM. Infantile fibrosarcoma: radiological and clinical features. Skeletal Radiol. 1994;23:337–41.

    CAS  PubMed  Google Scholar 

  14. Canale S, Vanel D, Couanet D, et al. Infantile fibrosarcoma: magnetic resonance imaging findings in six cases. Eur J Radiol. 2009;72:30–7.

    PubMed  Google Scholar 

  15. Fink AM, Stringer DA, Cairns RA, et al. Pediatric case of the day. Congenital fibrosarcoma (CFS). Radiographics. 1995;15:243–6.

    CAS  PubMed  Google Scholar 

  16. Durin L, Jeanne-Pasquier C, Bailleul P, et al. Prenatal diagnosis of a fibrosarcoma of the thigh: a case report. Fetal Diagn Ther. 2006;21:481–4.

    PubMed  Google Scholar 

  17. Eich GF, Hoeffel JC, Tschappeler H, et al. Fibrous tumours in children: imaging features of a heterogeneous group of disorders. Pediatr Radiol. 1998;28:500–9.

    CAS  PubMed  Google Scholar 

  18. McCarville MB, Kaste SC, Pappo AS. Soft-tissue malignancies in infancy. AJR Am J Roentgenol. 1999;173:973–7.

    CAS  PubMed  Google Scholar 

  19. Pousti TJ, Upton J, Loh M, et al. Congenital fibrosarcoma of the upper extremity. Plast Reconstr Surg. 1998;102:1158–62.

    CAS  PubMed  Google Scholar 

  20. Knezevich SR, McFadden DE, Tao W, et al. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184–7.

    CAS  PubMed  Google Scholar 

  21. Rubnitz JE, Downing JR, Pui CH, et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol. 1997;15:1150–7.

    CAS  PubMed  Google Scholar 

  22. Yamashiro DJ, Nakagawara A, Ikegaki N, et al. Expression of TrkC in favorable human neuroblastomas. Oncogene. 1996;12:37–41.

    CAS  PubMed  Google Scholar 

  23. Lannon CL, Sorensen PH. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol. 2005;15:215–23.

    CAS  PubMed  Google Scholar 

  24. Lae M, Freneaux P, Sastre-Garau X, et al. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod Pathol. 2009;22:291–8.

    CAS  PubMed  Google Scholar 

  25. Alaggio R, Barisani D, Ninfo V, et al. Morphologic overlap between infantile myofibromatosis and infantile fibrosarcoma: a pitfall in diagnosis. Pediatr Dev Pathol. 2008;11:355–62.

    PubMed  Google Scholar 

  26. Mandahl N, Heim S, Rydholm A, et al. Nonrandom numerical chromosome aberrations (+8, +11, +17, +20) in infantile fibrosarcoma. Cancer Genet Cytogenet. 1989;40:137–9.

    CAS  PubMed  Google Scholar 

  27. Bourgeois JM, Knezevich SR, Mathers JA, et al. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 2000;24:937–46.

    CAS  PubMed  Google Scholar 

  28. Makretsov N, He M, Hayes M, et al. A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosomes Cancer. 2004;40:152–7.

    CAS  PubMed  Google Scholar 

  29. Alaggio R, Ninfo V, Rosolen A, et al. Primitive myxoid mesenchymal tumor of infancy: a clinicopathologic report of 6 cases. Am J Surg Pathol. 2006;30:388–94.

    PubMed  Google Scholar 

  30. Nonaka D, Sun CC, Nonaka D, et al. Congenital fibrosarcoma with metastasis in a fetus. Pediatr Dev Pathol. 2004;7:187–91.

    PubMed  Google Scholar 

  31. Russell H, Hicks MJ, Bertuch AA, et al. Infantile fibrosarcoma: clinical and histologic responses to cytotoxic chemotherapy. Pediatr Blood Cancer. 2009;53:23–7.

    PubMed  Google Scholar 

  32. Meis-Kindblom JM, Kindblom LG, Enzinger FM. Sclerosing epithelioid fibrosarcoma. A variant of fibrosarcoma simulating carcinoma. Am J Surg Pathol. 1995;19:979–93.

    CAS  PubMed  Google Scholar 

  33. Ossendorf C, Studer GM, Bode B, et al. Sclerosing epithelioid fibrosarcoma: case presentation and a systematic review. Clin Orthop Relat Res. 2008;466:1485–91.

    PubMed Central  PubMed  Google Scholar 

  34. Grunewald TG, Von LI, Weirich G, et al. Sclerosing epithelioid fibrosarcoma of the bone: a case report of high resistance to chemotherapy and a survey of the literature. Sarcoma. 2010;2010:431627.

    PubMed Central  PubMed  Google Scholar 

  35. Rekhi B, Folpe AL, Deshmukh M, et al. Sclerosing epithelioid fibrosarcoma-a report of two cases with cytogenetic analysis of fus gene rearrangement by FISH technique. Pathol Oncol Res. 2011;17:145–8.

    Google Scholar 

  36. Guillou L, Benhattar J, Gengler C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31:1387–402.

    PubMed  Google Scholar 

  37. Donner LR, Clawson K, Dobin SM. Sclerosing epithelioid fibrosarcoma: a cytogenetic, immunohistochemical, and ultrastructural study of an unusual histological variant. Cancer Genet Cytogenet. 2000;119:127–31.

    CAS  PubMed  Google Scholar 

  38. Mentzel T, Dry S, Katenkamp D, et al. Low-grade myofibroblastic sarcoma: analysis of 18 cases in the spectrum of myofibroblastic tumors. Am J Surg Pathol. 1998;22:1228–38.

    CAS  PubMed  Google Scholar 

  39. Montgomery E, Goldblum JR, Fisher C. Myofibrosarcoma: a clinicopathologic study. Am J Surg Pathol. 2001;25:219–28.

    CAS  PubMed  Google Scholar 

  40. Smith DM, Mahmoud HH, Jenkins JJ, et al. Myofibrosarcoma of the head and neck in children. Pediatr Pathol Lab Med. 1995;112:275–81.

    Google Scholar 

  41. Fujiwara M, Yuba Y, Wada A, et al. Myofibrosarcoma of the nasal bone. Am J Otolaryngol. 2005;26:265–7.

    PubMed  Google Scholar 

  42. Eyden B. The myofibroblast: an assessment of controversial issues and a definition useful in diagnosis and research. [Review] [97 refs]. Ultrastruct Pathol. 2001;25:39–50.

    CAS  PubMed  Google Scholar 

  43. Fisher C. Myofibroblastic malignancies. [Review] [92 refs]. Adv Anat Pathol. 2004;11:190–201.

    PubMed  Google Scholar 

  44. Montgomery E, Fisher C. Myofibroblastic differentiation in malignant fibrous histiocytoma (pleomorphic myofibrosarcoma): a clinicopathological study. Histopathology. 2001;38:499–509.

    CAS  PubMed  Google Scholar 

  45. Hisaoka M, Wei-Qi S, Jian W, et al. Specific but variable expression of h-caldesmon in leiomyosarcomas: an immunohistochemical reassessment of a novel myogenic marker. Appl Immunohistochem Mol Morphol. 2001;9:302–8.

    CAS  PubMed  Google Scholar 

  46. Cessna MH, Zhou H, Perkins SL, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25:1150–7.

    CAS  PubMed  Google Scholar 

  47. Cessna MH, Zhou H, Sanger WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol. 2002;15:931–8.

    PubMed  Google Scholar 

  48. Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C, et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005;29:653–9.

    PubMed  Google Scholar 

  49. Vernon SE, Bejarano PA. Low-grade fibromyxoid sarcoma: a brief review. Arch Pathol Lab Med. 2006;130:1358–60.

    PubMed  Google Scholar 

  50. Kaoutar Z, Benlemlih A, Taoufiq H, et al. Low-grade fibromyxoid sarcoma arising in the big toe. South Med J. 2011;104:241–3.

    PubMed  Google Scholar 

  51. Bahrami A, Folpe AL. Adult-type fibrosarcoma: a reevaluation of 163 putative cases diagnosed at a single institution over a 48-year period. Am J Surg Pathol. 2010;34:1504–13.

    PubMed  Google Scholar 

  52. Hwang S, Kelliher E, Hameed M. Imaging features of low-grade fibromyxoid sarcoma (Evans tumor). Skeletal Radiol. 2012;41:1263–72.

    PubMed  Google Scholar 

  53. Evans HL. Low-grade fibromyxoid sarcoma: a report of 12 cases. Am J Surg Pathol. 1993;17:595–600.

    CAS  PubMed  Google Scholar 

  54. Lane KL, Shannon RJ, Weiss SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol. 1997;21:1481–8.

    CAS  PubMed  Google Scholar 

  55. Doyle LA, Moller E, Dal Cin P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35:733–41.

    PubMed  Google Scholar 

  56. Moller E, Hornick JL, Magnusson L, et al. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res. 2011;17:2646–56.

    PubMed  Google Scholar 

  57. Matsuyama A, Hisaoka M, Shimajiri S, et al. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol. 2006;30:1077–84.

    PubMed  Google Scholar 

  58. Downs-Kelly E, Goldblum JR, Patel RM, et al. The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 2008;32:8–13.

    PubMed  Google Scholar 

  59. Patel RM, Downs-Kelly E, Dandekar MN, et al. FUS (16p11) gene rearrangement as detected by fluorescence in-situ hybridization in cutaneous low-grade fibromyxoid sarcoma: a potential diagnostic tool. Am J Dermatopathol. 2011;33:140–3.

    PubMed  Google Scholar 

  60. Mertens F, Fletcher CD, Antonescu CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85:408–15.

    CAS  PubMed  Google Scholar 

  61. Bisogno G, Sotti G, Nowicki Y, et al. Soft tissue sarcoma as a second malignant neoplasm in the pediatric age group. Cancer. 2004;100:1758–65.

    PubMed  Google Scholar 

  62. Horenstein MG, Prieto VG, Nuckols JD, et al. Indeterminate fibrohistiocytic lesions of the skin: is there a spectrum between dermatofibroma and dermatofibrosarcoma protuberans? Am J Surg Pathol. 2000;24:996–1003.

    CAS  PubMed  Google Scholar 

  63. Rudolph P, Schubert B, Wacker HH, et al. Immunophenotyping of dermal spindle cell tumors: diagnostic value of monocyte marker Ki-M1p and histogenetic considerations. Am J Surg Pathol. 1997;21:791–800.

    CAS  PubMed  Google Scholar 

  64. Fletcher CDM. Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol. 1992;16:213–28.

    CAS  PubMed  Google Scholar 

  65. Brooks JJ. The significance of double phenotypic patterns and markers in human sarcomas: a new model of mesenchymal differentiation. Am J Pathol. 1986;125:113–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Garg MK, Yadav MK, Gupta S, et al. Dermatofibrosarcoma protuberans with contiguous infiltration of the underlying bone. Cancer Imaging. 2009;9:63–6.

    PubMed Central  PubMed  Google Scholar 

  67. Kransdorf MJ, Meis-Kindblom JM. Dermatofibrosarcoma protuberans: radiologic appearance. AJR Am J Roentgenol. 1994;163:391–4.

    CAS  PubMed  Google Scholar 

  68. Torreggiani WC, Al-Ismail K, Munk PL, et al. Dermatofibrosarcoma protuberans: MR imaging features. AJR Am J Roentgenol. 2002;178:989–93.

    PubMed  Google Scholar 

  69. Laffan EE, Ngan BY, Navarro OM. Pediatric soft-tissue tumors and pseudotumors: MR imaging features with pathologic correlation: part 2. Tumors of fibroblastic/myofibroblastic, so-called fibrohistiocytic, muscular, lymphomatous, neurogenic, hair matrix, and uncertain origin. Radiographics. 2009;29:e36.

    PubMed  Google Scholar 

  70. Kim SD, Park JY, Choi WS, et al. Intracranial recurrence of the scalp dermatofibrosarcoma. Clin Neurol Neurosurg. 2007;109:172–5.

    PubMed  Google Scholar 

  71. Abe T, Kamida T, Goda M, et al. Intracranial infiltration by recurrent scalp dermatofibrosarcoma protuberans. J Clin Neurosci. 2009;16:1358–60.

    PubMed  Google Scholar 

  72. Morel M, Taieb S, Penel N, et al. Imaging of the most frequent superficial soft-tissue sarcomas. Skeletal Radiol. 2011;40:271–84.

    PubMed  Google Scholar 

  73. Parajuly SS, Peng YL. Sonography of dermatofibrosarcoma protuberans in the skin over breast. J Med Ultrasound. 2010;18:130–5.

    Google Scholar 

  74. Liu SZ, Ho TL, Hsu SM, et al. Imaging of dermatofibrosarcoma protuberans of breast. Breast J. 2010;16:541–3.

    PubMed  Google Scholar 

  75. Widmann G, Riedl A, Schoepf D, et al. State-of-the-art HR-US imaging findings of the most frequent musculoskeletal soft-tissue tumors. Skeletal Radiol. 2009;38:637–49.

    PubMed  Google Scholar 

  76. Shin YR, Kim JY, Sung MS, et al. Sonographic findings of dermatofibrosarcoma protuberans with pathologic correlation. J Ultrasound Med. 2008;27:269–74.

    PubMed  Google Scholar 

  77. Walker EA, Salesky JS, Fenton ME, et al. Magnetic resonance imaging of malignant soft tissue neoplasms in the adult. Radiol Clin North Am. 2011;49:1219–34, vi.

    PubMed  Google Scholar 

  78. Riggs K, McGuigan KL, Morrison WB, et al. Role of magnetic resonance imaging in perioperative assessment of dermatofibrosarcoma protuberans. Dermatol Surg. 2009;35:2036–41.

    CAS  PubMed  Google Scholar 

  79. Thornton SL, Reid J, Papay FA, et al. Childhood dermatofibrosarcoma protuberans: role of preoperative imaging. J Am Acad Dermatol. 2005;53:76–83.

    PubMed  Google Scholar 

  80. Serra-Guillen C, Sanmartin O, Llombart B, et al. Correlation between preoperative magnetic resonance imaging and surgical margins with modified Mohs for dermatofibrosarcoma protuberans. Dermatol Surg. 2011;37:1638–45.

    CAS  PubMed  Google Scholar 

  81. Djilas-Ivanovic D, Prvulovic N, Bogdanovic-Stojanovic D, et al. Dermatofibrosarcoma protuberans of the breast: mammographic, ultrasound, MRI and MRS features. Arch Gynecol Obstet. 2009;280:827–30.

    PubMed  Google Scholar 

  82. Basu S, Baghel NS. Recurrence of dermatofibrosarcoma protuberans in post-surgical scar detected by 18F-FDG-PET imaging. Hell J Nucl Med. 2009;12:68.

    PubMed  Google Scholar 

  83. Maire G, Martin L, Michalak-Provost S, et al. Fusion of COL1A1 exon 29 with PDGFB exon 2 in a der(22)t(17;22) in a pediatric giant cell fibroblastoma with a pigmented Bednar tumor component. Evidence for age-related chromosomal pattern in dermatofibrosarcoma protuberans and related tumors. Cancer Genet Cytogenet. 2002;134:156–61.

    CAS  PubMed  Google Scholar 

  84. Orndal C, Mandahl N, Rydholm A, et al. Supernumerary ring chromosomes in five bone and soft tissue tumors of low or borderline malignancy. Cancer Genet Cytogenet. 1992;60:170–5.

    CAS  PubMed  Google Scholar 

  85. Pedeutour F, Simon MP, Minoletti F, et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet. 1996;72:171–4.

    CAS  PubMed  Google Scholar 

  86. Terrier-Lacombe MJ, Guillou L, Maire G, et al. Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data – a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol. 2003;27:27–39.

    PubMed  Google Scholar 

  87. Sigel JE, Bergfeld WF, Goldblum JR. A morphologic study of dermatofibrosarcoma protuberans: expansion of a histologic profile. J Cutan Pathol. 2000;27:159–63.

    CAS  PubMed  Google Scholar 

  88. Tardio JC, Tardio JC. CD34-reactive tumors of the skin. An updated review of an ever-growing list of lesions. [Review] [171 refs]. J Cutan Pathol. 2009;36:89–102.

    PubMed  Google Scholar 

  89. Haycox CL, Odland PB, Olbricht SM, et al. Immunohistochemical characterization of dermatofibrosarcoma protuberans with practical applications for diagnosis and treatment. [see comments.]. [Review] [38 refs]. J Am Acad Dermatol. 1997;37:438–44.

    CAS  PubMed  Google Scholar 

  90. Goldblum JR, Reith JD, Weiss SW. Sarcomas arising in dermatofibrosarcoma protuberans: a reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow up. Am J Surg Pathol. 2000;24:1125–30.

    CAS  PubMed  Google Scholar 

  91. Sachdev R, Sundram U. Expression of CD163 in dermatofibroma, cellular fibrous histiocytoma, and dermatofibrosarcoma protuberans: comparison with CD68, CD34, and Factor XIIIa. J Cutan Pathol. 2006;33:353–60.

    PubMed  Google Scholar 

  92. Sozzi G, Minoletti F, Miozzo M, et al. Relevance of cytogenetic and fluorescent in situ hybridization analyses in the clinical assessment of soft tissue sarcoma. Hum Pathol. 1997;28:134–42.

    CAS  PubMed  Google Scholar 

  93. Connelly JH, Evans HL. Dermatofibrosarcoma protuberans: a clinicopathologic review with emphasis on fibrosarcomatous areas. Am J Surg Pathol. 1992;16:921–5.

    CAS  PubMed  Google Scholar 

  94. Marks LB, Suit HD, Rosenberg AE, et al. Dermatofibrosarcoma protuberans treated with radiation therapy. Int J Radiat Oncol Biol Phys. 1989;17:379–84.

    CAS  PubMed  Google Scholar 

  95. Abrams TA, Schuetze SM, Abrams TA, et al. Targeted therapy for dermatofibrosarcoma protuberans. [Review] [39 refs]. Curr Oncol Rep. 2006;8:291–6.

    CAS  PubMed  Google Scholar 

  96. Enzinger FM. Angiomatoid malignant fibrous histiocytoma: a distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer. 1979;44:2147–57.

    CAS  PubMed  Google Scholar 

  97. Costa MJ, Weiss SW. Angiomatoid malignant fibrous histiocytoma. A follow-up study of 108 cases with evaluation of possible histologic predictors of outcome. Am J Surg Pathol. 1990;14:1126–32.

    CAS  PubMed  Google Scholar 

  98. Thway K. Angiomatoid fibrous histiocytoma: a review with recent genetic findings. Arch Pathol Lab Med. 2008;132:273–7.

    PubMed  Google Scholar 

  99. Hothi D, Brogan PA, Davis E, et al. Polyarteritis nodosa as a presenting feature of angiomatoid fibrous histiocytoma. Rheumatology (Oxford). 2004;43:245–6.

    CAS  Google Scholar 

  100. Fanburg-Smith JC, Miettinen M. Angiomatoid "malignant" fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol. 1999;30:1336–43.

    CAS  PubMed  Google Scholar 

  101. Ajlan AM, Sayegh K, Powell T, et al. Angiomatoid fibrous histiocytoma: magnetic resonance imaging appearance in 2 cases. J Comput Assist Tomogr. 2010;34:791–4.

    PubMed  Google Scholar 

  102. Petrey WB, LeGallo RD, Fox MG, et al. Imaging characteristics of angiomatoid fibrous histiocytoma of bone. Skeletal Radiol. 2011;40:233–7.

    PubMed  Google Scholar 

  103. Raddaoui E, Donner LR, Panagopoulos I. Fusion of the FUS and ATF1 genes in a large, deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol. 2002;11:157–62.

    PubMed  Google Scholar 

  104. Hallor KH, Mertens F, Jin Y, et al. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2005;44:97–102.

    CAS  PubMed  Google Scholar 

  105. Rossi S, Szuhai K, Ijszenga M, et al. EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res. 2007;13:7322–8.

    CAS  PubMed  Google Scholar 

  106. Weinreb I, Rubin BP, Goldblum JR. Pleomorphic angiomatoid fibrous histiocytoma: a case confirmed by fluorescence in situ hybridization analysis for EWSR1 rearrangement. J Cutan Pathol. 2008;35:855–60.

    PubMed  Google Scholar 

  107. Fletcher CDM. Angiomatoid "malignant fibrous histiocytoma": an immunohistochemical study indicative of myoid differentiation. Hum Pathol. 1991;22:563–8.

    CAS  PubMed  Google Scholar 

  108. Tanas MR, Rubin BP, Montgomery EA, et al. Utility of FISH in the diagnosis of angiomatoid fibrous histiocytoma: a series of 18 cases. Mod Pathol. 2010;23:93–7.

    CAS  PubMed  Google Scholar 

  109. Corpron CA, Black CT, Raney RB, et al. Malignant fibrous histiocytoma in children. J Pediatr Surg. 1996;31:1080–3.

    CAS  PubMed  Google Scholar 

  110. Cole CH, Magee JF, Gianoulis M, et al. Malignant fibrous histiocytoma in childhood. Cancer. 1993;71:4077–83.

    CAS  PubMed  Google Scholar 

  111. Chow LT, Allen PW, Kumta SM, et al. Angiomatoid malignant fibrous histiocytoma: report of an unusual case with highly aggressive clinical course. J Foot Ankle Surg. 1998;37:235–8.

    CAS  PubMed  Google Scholar 

  112. Enzinger FM, Zhang RY. Plexiform fibrohistiocytic tumor presenting in children and young adults. An analysis of 65 cases. Am J Surg Pathol. 1988;12:818–26.

    CAS  PubMed  Google Scholar 

  113. Jafarian F, McCuaig C, Kokta V, et al. Plexiform fibrohistiocytic tumor in three children. Pediatr Dermatol. 2006;23:7–12.

    PubMed  Google Scholar 

  114. Leclerc-Mercier S, Pedeutour F, Fabas T, et al. Plexiform fibrohistiocytic tumor with molecular and cytogenetic analysis. Pediatr Dermatol. 2011;28:26–9.

    PubMed  Google Scholar 

  115. Segura LG, Harris J, Wang B, et al. Plexiform fibrohistiocytic tumor: a rare low-grade malignancy of children and young adults. Arch Otolaryngol Head Neck Surg. 2002;128:966–70.

    PubMed  Google Scholar 

  116. Taher A, Pushpanathan C. Plexiform fibrohistiocytic tumor: a brief review. Arch Pathol Lab Med. 2007;131:1135–8.

    PubMed  Google Scholar 

  117. Zelger B, Weinlich G, Steiner H, et al. Dermal and subcutaneous variants of plexiform fibrohistiocytic tumor. Am J Surg Pathol. 1997;21:235–41.

    CAS  PubMed  Google Scholar 

  118. Remstein ED, Arndt CA, Nascimento AG. Plexiform fibrohistiocytic tumor: clinicopathologic analysis of 22 cases. Am J Surg Pathol. 1999;23:662–70.

    CAS  PubMed  Google Scholar 

  119. Jacobson-Dunlop E, White Jr CR, Mansoor A. Features of plexiform fibrohistiocytic tumor in skin punch biopsies: a retrospective study of 6 cases. Am J Dermatopathol. 2011;33:551–6.

    PubMed  Google Scholar 

  120. Angervall L, Kindblom LG, Lindholm K, et al. Plexiform fibrohistiocytic tumor. Report of a case involving preoperative aspiration cytology and immunohistochemical and ultrastructural analysis of surgical specimens. Pathol Res Pract. 1992;188:350–6. discussion 356-359.

    CAS  PubMed  Google Scholar 

  121. Alaggio R, Collini P, Randall RL, et al. Undifferentiated high-grade pleomorphic sarcomas in children: a clinicopathologic study of 10 cases and review of literature. Pediatr Dev Pathol. 2010;13:209–17.

    PubMed  Google Scholar 

  122. Stein-Wexler R. Pediatric soft tissue sarcomas. Semin Ultrasound CT MR. 2011;32:470–88.

    PubMed  Google Scholar 

  123. Colleran G, Madewell J, Foran P, et al. Imaging of soft tissue and osseous sarcomas of the extremities. Semin Ultrasound CT MR. 2011;32:442–55.

    PubMed  Google Scholar 

  124. Palmer JL, Masui S, Pritchard S, et al. Cytogenetic and molecular genetic analysis of a pediatric pleomorphic sarcoma reveals similarities to adult malignant fibrous histiocytoma. Cancer Genet Cytogenet. 1997;95:141–7.

    CAS  PubMed  Google Scholar 

  125. Alaggio R, Coffin CM, Weiss SW, et al. Liposarcomas in young patients: a study of 82 cases occurring in patients younger than 22 years of age. Am J Surg Pathol. 2009;33:645–58.

    PubMed  Google Scholar 

  126. Coindre JM, Hostein I, Maire G, et al. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol. 2004;203:822–30.

    CAS  PubMed  Google Scholar 

  127. Sarkar M, Mulliken JB, Kozakewich HP, et al. Thrombocytopenic coagulopathy (Kasabach-Merritt phenomenon) is associated with Kaposiform hemangioendothelioma and not with common infantile hemangioma. Plast Reconstr Surg. 1997;100:1377–86.

    CAS  PubMed  Google Scholar 

  128. Hsiao CC, Chen CC, Ko SF, et al. A case of axillary kaposiform hemangioendothelioma resembles a soft tissue sarcoma. J Pediatr Hematol Oncol. 2005;27:596–8.

    PubMed  Google Scholar 

  129. Lalaji TA, Haller JO, Burgess RJ. A case of head and neck kaposiform hemangioendothelioma simulating a malignancy on imaging. Pediatr Radiol. 2001;31:876–8.

    CAS  PubMed  Google Scholar 

  130. Zhu Y, Qiu G, Zhao H, et al. Kaposiform hemangioendothelioma with adolescent thoracic scoliosis: a case report and review of literature. Eur Spine J. 2011;20 Suppl 2:S309–13.

    PubMed  Google Scholar 

  131. DeFatta RJ, Verret DJ, Adelson RT, et al. Kaposiform hemangioendothelioma: case report and literature review. Laryngoscope. 2005;115:1789–92.

    PubMed  Google Scholar 

  132. Mukerji SS, Osborn AJ, Roberts J, et al. Kaposiform hemangioendothelioma (with Kasabach Merritt syndrome) of the head and neck: case report and review of the literature. Int J Pediatr Otorhinolaryngol. 2009;73:1474–6.

    PubMed  Google Scholar 

  133. Dadras SS, Skrzypek A, Nguyen L, et al. Prox-1 promotes invasion of kaposiform hemangioendotheliomas. J Invest Dermatol. 2008;128:2798–806.

    CAS  PubMed  Google Scholar 

  134. Le Huu AR, Jokinen CH, Rubin BP, et al. Expression of prox1, lymphatic endothelial nuclear transcription factor, in Kaposiform hemangioendothelioma and tufted angioma. Am J Surg Pathol. 2010;34:1563–73.

    PubMed  Google Scholar 

  135. North PE. Pediatric vascular tumors and malformations. Surg Pathol Clin. 2010;2010:455–95.

    Google Scholar 

  136. Bien E, Stachowicz-Stencel T, Balcerska A, et al. Angiosarcoma in children – still uncontrollable oncological problem. The report of the Polish Paediatric Rare Tumours Study. Eur J Cancer Care (Engl). 2009;18:411–20.

    CAS  Google Scholar 

  137. Deyrup AT, Miettinen M, North PE, et al. Angiosarcomas arising in the viscera and soft tissue of children and young adults: a clinicopathologic study of 15 cases. Am J Surg Pathol. 2009;33:264–9.

    PubMed  Google Scholar 

  138. Deyrup AT, Miettinen M, North PE, et al. Pediatric cutaneous angiosarcomas: a clinicopathologic study of 10 cases. Am J Surg Pathol. 2011;35:70–5.

    PubMed  Google Scholar 

  139. Thompson WM, Levy AD, Aguilera NS, et al. Angiosarcoma of the spleen: imaging characteristics in 12 patients. Radiology. 2005;235:106–15.

    PubMed  Google Scholar 

  140. Qiu LL, Yu RS, Chen Y, et al. Sarcomas of abdominal organs: computed tomography and magnetic resonance imaging findings. Semin Ultrasound CT MR. 2011;32:405–21.

    PubMed  Google Scholar 

  141. Abbott RM, Levy AD, Aguilera NS, et al. From the archives of the AFIP: primary vascular neoplasms of the spleen: radiologic-pathologic correlation. Radiographics. 2004;24:1137–63.

    PubMed  Google Scholar 

  142. Lalwani N, Prasad SR, Vikram R, et al. Pediatric and adult primary sarcomas of the kidney: a cross-sectional imaging review. Acta Radiol. 2011;52:448–57.

    PubMed  Google Scholar 

  143. Chung EM, Lattin Jr GE, Cube R, et al. From the archives of the AFIP: pediatric liver masses: radiologic-pathologic correlation. Part 2. Malignant tumors. Radiographics. 2011;31:483–507.

    PubMed  Google Scholar 

  144. Kaneko K, Onitsuka H, Murakami J, et al. MRI of primary spleen angiosarcoma with iron accumulation. J Comput Assist Tomogr. 1992;16:298–300.

    CAS  PubMed  Google Scholar 

  145. Van Dyck P, Vanhoenacker FM, Vogel J, et al. Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors. Eur Radiol. 2006;16:2644–51.

    PubMed  Google Scholar 

  146. Benz MR, Dry SM, Eilber FC, et al. Correlation between glycolytic phenotype and tumor grade in soft-tissue sarcomas by 18F-FDG PET. J Nucl Med. 2010;51:1174–81.

    PubMed Central  PubMed  Google Scholar 

  147. Vasanawala MS, Wang Y, Quon A, et al. F-18 fluorodeoxyglucose PET/CT as an imaging tool for staging and restaging cutaneous angiosarcoma of the scalp. Clin Nucl Med. 2006;31:534–7.

    PubMed  Google Scholar 

  148. Freudenberg LS, Rosenbaum SJ, Schulte-Herbruggen J, et al. Diagnosis of a cardiac angiosarcoma by fluorine-18 fluordeoxyglucose positron emission tomography. Eur Radiol. 2002;12 Suppl 3:S158–61.

    PubMed  Google Scholar 

  149. Shimada K, Nakamoto Y, Isoda H, et al. FDG PET for giant cavernous hemangioma: important clue to differentiate from a malignant vascular tumor in the liver. Clin Nucl Med. 2010;35:924–6.

    PubMed  Google Scholar 

  150. Drevelegas A, Pilavaki M, Chourmouzi D. Lipomatous tumors of soft tissue: MR appearance with histological correlation. Eur J Radiol. 2004;50:257–67.

    CAS  PubMed  Google Scholar 

  151. Sheah K, Ouellette HA, Torriani M, et al. Metastatic myxoid liposarcomas: imaging and histopathologic findings. Skeletal Radiol. 2008;37:251–8.

    PubMed  Google Scholar 

  152. Murphey MD, Arcara LK, Fanburg-Smith J. From the archives of the AFIP: imaging of musculoskeletal liposarcoma with radiologic-pathologic correlation. Radiographics. 2005;25:1371–95.

    PubMed  Google Scholar 

  153. Song T, Shen J, Liang BL, et al. Retroperitoneal liposarcoma: MR characteristics and pathological correlative analysis. Abdom Imaging. 2007;32:668–74.

    PubMed  Google Scholar 

  154. van Vliet M, Kliffen M, Krestin GP, et al. Soft tissue sarcomas at a glance: clinical, histological, and MR imaging features of malignant extremity soft tissue tumors. Eur Radiol. 2009;19:1499–511.

    PubMed  Google Scholar 

  155. Jelinek JS, Kransdorf MJ, Shmookler BM, et al. Liposarcoma of the extremities: MR and CT findings in the histologic subtypes. Radiology. 1993;186:455–9.

    CAS  PubMed  Google Scholar 

  156. Sreekantaiah C, Karakousis CP, Leong SP, et al. Cytogenetic findings in liposarcoma correlate with histopathologic subtypes. Cancer. 1992;69:2484–95.

    CAS  PubMed  Google Scholar 

  157. Kuroda M, Ishida T, Takanashi M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol. 1997;151:735–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Panagopoulos I, Hoglund M, Mertens F, et al. Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996;12:489–94.

    CAS  PubMed  Google Scholar 

  159. Bode-Lesniewska B, Frigerio S, Exner U, et al. Relevance of translocation type in myxoid liposarcoma and identification of a novel EWSR1-DDIT3 fusion. Genes Chromosomes Cancer. 2007;46:961–71.

    CAS  PubMed  Google Scholar 

  160. Romeo S, Dei Tos AP. Soft tissue tumors associated with EWSR1 translocation. Virchows Arch. 2010;456:219–34.

    CAS  PubMed  Google Scholar 

  161. Debelenko LV, Perez-Atayde AR, Dubois SG, et al. p53+/mdm2- atypical lipomatous tumor/well-differentiated liposarcoma in young children: an early expression of Li-Fraumeni syndrome. Pediatr Dev Pathol. 2010;13:218–24.

    PubMed  Google Scholar 

  162. Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G, et al. Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res. 2001;21:3609–14.

    CAS  PubMed  Google Scholar 

  163. Sirvent N, Coindre JM, Maire G, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31:1476–89.

    PubMed  Google Scholar 

  164. Taubert H, Wurl P, Meye A, et al. Molecular and immunohistochemical p53 status in liposarcoma and malignant fibrous histiocytoma: identification of seven new mutations for soft tissue sarcomas. Cancer. 1995;76:1187–96.

    CAS  PubMed  Google Scholar 

  165. Weiss SW, Rao VK. Well-differentiated liposarcoma (atypical lipoma) of deep soft tissue of the extremities, retroperitoneum, and miscellaneous sites. A follow-up study of 92 cases with analysis of the incidence of "dedifferentiation". Am J Surg Pathol. 1992;16:1051–8.

    CAS  PubMed  Google Scholar 

  166. Hisaoka M, Morimitsu Y, Hashimoto H, et al. Retroperitoneal liposarcoma with combined well-differentiated and myxoid malignant fibrous histiocytoma-like myxoid areas. Am J Surg Pathol. 1999;23:1480–92.

    CAS  PubMed  Google Scholar 

  167. Leach FS, Tokino T, Meltzer P, et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993;53:2231–4.

    CAS  PubMed  Google Scholar 

  168. Newton Jr WA, Gehan EA, Webber BL, et al. Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification – an Intergroup Rhabdomyosarcoma Study. Cancer. 1995;76:1073–85.

    PubMed  Google Scholar 

  169. Davicioni E, Anderson MJ, Finckenstein FG, et al. Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the Children's Oncology Group. Am J Pathol. 2009;174:550–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Scrable H, Witte D, Shimada H, et al. Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer. 1989;1:23–35.

    CAS  PubMed  Google Scholar 

  171. Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther. 2002;1:97–104.

    CAS  PubMed  Google Scholar 

  172. Anderson J, Gordon A, Pritchard-Jones K, et al. Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer. 1999;26:275–85.

    CAS  PubMed  Google Scholar 

  173. Morotti RA, Nicol KK, Parham DM, et al. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children's Oncology Group experience. Am J Surg Pathol. 2006;30:962–8.

    PubMed  Google Scholar 

  174. Folpe AL. MyoD1 and myogenin expression in human neoplasia: a review and update. Adv Anat Pathol. 2002;9:198–203.

    PubMed  Google Scholar 

  175. Ebauer M, Wachtel M, Niggli FK, et al. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene. 2007;26:7267–81.

    CAS  PubMed  Google Scholar 

  176. Bridge JA, Liu J, Weibolt V, et al. Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an Intergroup rhabdomyosarcoma Study. Genes Chromosomes Cancer. 2000;27: 337–44.

    CAS  PubMed  Google Scholar 

  177. Raney RB, Walterhouse DO, Meza JL, et al. Results of the Intergroup Rhabdomyosarcoma Study Group D9602 protocol, using vincristine and dactinomycin with or without cyclophosphamide and radiation therapy, for newly diagnosed patients with low-risk embryonal rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol. 2011;29:1312–8.

    CAS  PubMed  Google Scholar 

  178. Joshi D, Anderson JR, Paidas C, et al. Age is an independent prognostic factor in rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Pediatr Blood Cancer. 2004;42:64–73.

    CAS  PubMed  Google Scholar 

  179. Arndt CA, Stoner JA, Hawkins DS, et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: Children's oncology group study D9803. J Clin Oncol. 2009;27:5182–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Lager JJ, Lyden ER, Anderson JR, et al. Pooled analysis of phase II window studies in children with contemporary high-risk metastatic rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol. 2006;24:3415–22.

    PubMed  Google Scholar 

  181. Wexler LH, Ladanyi M. Diagnosing alveolar rhabdomyosarcoma: morphology must be coupled with fusion confirmation. J Clin Oncol. 2010;28:2126–8.

    PubMed  Google Scholar 

  182. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013;20:387–97.

    CAS  PubMed  Google Scholar 

  183. Riopelle JL, Theriault JP. An unknown type of soft part sarcoma: alveolar rhabdomyosarcoma. Ann Anat Pathol (Paris). 1956;1:88–111.

    CAS  Google Scholar 

  184. Tsokos M, Webber BL, Parham DM, et al. Rhabdomyosarcoma. A new classification scheme related to prognosis. Arch Pathol Lab Med. 1992;116:847–55.

    CAS  PubMed  Google Scholar 

  185. Pinto A, Tallini G, Novak RW, et al. Undifferentiated rhabdomyosarcoma with lymphoid phenotype expression. Med Pediatr Oncol. 1997;28:165–70.

    CAS  PubMed  Google Scholar 

  186. Gonzalez-Crussi F, Black-Schaffer S. Rhabdomyosarcoma of infancy and childhood. Problems of morphologic classification. Am J Surg Pathol. 1979;3:157–71.

    Google Scholar 

  187. Harms D. Alveolar rhabdomyosarcoma: a prognostically unfavorable rhabdomyosarcoma type and its necessary distinction from embryonal rhabdomyosarcoma. Curr Top Pathol. 1995;89:273–96.

    CAS  PubMed  Google Scholar 

  188. Wang NP, Marx J, McNutt MA, et al. Expression of myogenic regulatory proteins (myogenin and MyoD1) in small blue round cell tumors of childhood. Am J Pathol. 1995;147:1799–810.

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Wachtel M, Runge T, Leuschner I, et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol. 2006;24:816–22.

    CAS  PubMed  Google Scholar 

  190. Barr FG, Smith LM, Lynch JC, et al. Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the Intergroup Rhabdomyosarcoma Study-III trial: a report from the Children's Oncology Group. J Mol Diagn. 2006;8:202–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Tobar A, Avigad S, Zoldan M, et al. Clinical relevance of molecular diagnosis in childhood rhabdomyosarcoma. Diagn Mol Pathol. 2000;9:9–13.

    CAS  PubMed  Google Scholar 

  192. Nishio J, Althof PA, Bailey JM, et al. Use of a novel FISH assay on paraffin-embedded tissues as an adjunct to diagnosis of alveolar rhabdomyosarcoma. Lab Invest. 2006;86:547–56.

    CAS  PubMed  Google Scholar 

  193. Shapiro DN, Parham DM, Douglass EC, et al. Relationship of tumor-cell ploidy to histologic subtype and treatment outcome in children and adolescents with unresectable rhabdomyosarcoma. J Clin Oncol. 1991;9:159–66.

    CAS  PubMed  Google Scholar 

  194. Smith LM, Anderson JR, Qualman SJ, et al. Which patients with microscopic disease and rhabdomyosarcoma experience relapse after therapy? A report from the soft tissue sarcoma committee of the children's oncology group. J Clin Oncol. 2001;19:4058–64.

    CAS  PubMed  Google Scholar 

  195. Douglass EC, Shapiro DN, Valentine M, et al. Alveolar rhabdomyosarcoma with the t(2;13): cytogenetic findings and clinicopathologic correlations. Med Pediatr Oncol. 1993;21:83–7.

    CAS  PubMed  Google Scholar 

  196. Lae M, Ahn EH, Mercado GE, et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol. 2007;212:143–51.

    CAS  PubMed  Google Scholar 

  197. Williamson D, Missiaglia E, de Reynies A, et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28:2151–8.

    PubMed  Google Scholar 

  198. Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol. 2002;20:2672–9.

    CAS  PubMed  Google Scholar 

  199. de Saint Aubain Somerhausen N, Fletcher CD. Leiomyosarcoma of soft tissue in children: clinicopathologic analysis of 20 cases. Am J Surg Pathol. 1999;23:755–63.

    CAS  PubMed  Google Scholar 

  200. Ferrari A, Bisogno G, Casanova M, et al. Childhood leiomyosarcoma: a report from the soft tissue sarcoma Italian Cooperative Group. Ann Oncol. 2001;12:1163–8.

    CAS  PubMed  Google Scholar 

  201. Hwang ES, Gerald W, Wollner N, et al. Leiomyosarcoma in childhood and adolescence. Ann Surg Oncol. 1997;4:223–7.

    CAS  PubMed  Google Scholar 

  202. Parham DM, Alaggio R, Coffin CM. Myogenic tumors in children and adolescents. Pediatr Dev Pathol. 2012;15:211–38.

    PubMed  Google Scholar 

  203. Akwari OE, Dozois RR, Weiland LH, et al. Leiomyosarcoma of the small and large bowel. Cancer. 1978;42:1375–84.

    CAS  PubMed  Google Scholar 

  204. McLeod AJ, Zornoza J, Shirkhoda A. Leiomyosarcoma: computed tomographic findings. Radiology. 1984;152:133–6.

    CAS  PubMed  Google Scholar 

  205. Bush CH, Reith JD, Spanier SS. Mineralization in musculoskeletal leiomyosarcoma: radiologic-pathologic correlation. AJR Am J Roentgenol. 2003;180:109–13.

    PubMed  Google Scholar 

  206. Hartman DS, Hayes WS, Choyke PL, et al. From the archives of the AFIP. Leiomyosarcoma of the retroperitoneum and inferior vena cava: radiologic-pathologic correlation. Radiographics. 1992;12:1203–20.

    CAS  PubMed  Google Scholar 

  207. Megibow AJ, Balthazar EJ, Hulnick DH, et al. CT evaluation of gastrointestinal leiomyomas and leiomyosarcomas. AJR Am J Roentgenol. 1985;144:727–31.

    CAS  PubMed  Google Scholar 

  208. Levy AD, Remotti HE, Thompson WM, et al. Gastrointestinal stromal tumors: radiologic features with pathologic correlation. Radiographics. 2003;23:283–304.

    PubMed  Google Scholar 

  209. Sabah M, Cummins R, Leader M, et al. Leiomyosarcoma and malignant fibrous histiocytoma share similar allelic imbalance pattern at 9p. Virchows Arch. 2005;446:251–8.

    PubMed  Google Scholar 

  210. Ragazzini P, Gamberi G, Pazzaglia L, et al. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol. 2004;19:401–11.

    CAS  PubMed  Google Scholar 

  211. Seidel C, Bartel F, Rastetter M, et al. Alterations of cancer-related genes in soft tissue sarcomas: hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int J Cancer. 2005;114:442–7.

    CAS  PubMed  Google Scholar 

  212. Deyrup AT, Lee VK, Hill CE, et al. Epstein-Barr virus-associated smooth muscle tumors are distinctive mesenchymal tumors reflecting multiple infection events: a clinicopathologic and molecular analysis of 29 tumors from 19 patients. Am J Surg Pathol. 2006;30:75–82.

    PubMed  Google Scholar 

  213. Parham DM, Reynolds AB, Webber BL. Use of monoclonal antibody 1H1, anticortactin, to distinguish normal and neoplastic smooth muscle cells: comparison with anti-alpha-smooth muscle actin and antimuscle-specific actin. Hum Pathol. 1995;26:776–83.

    CAS  PubMed  Google Scholar 

  214. Schmidt D, Thum P, Harms D, et al. Synovial sarcoma in children and adolescents. A report from the Kiel Pediatric Tumor Registry. Cancer. 1991;67:1667–72.

    CAS  PubMed  Google Scholar 

  215. Iyengar V, Lineberger AS, Kerman S, et al. Synovial sarcoma of the heart. Correlation with cytogenetic findings. Arch Pathol Lab Med. 1995;119:1080–2.

    CAS  PubMed  Google Scholar 

  216. Zenmyo M, Komiya S, Hamada T, et al. Intraneural monophasic synovial sarcoma: a case report. Spine (Phila Pa 1976). 2001;26:310–3.

    CAS  Google Scholar 

  217. Chu PG, Benhattar J, Weiss LM, et al. Intraneural synovial sarcoma: two cases. Mod Pathol. 2004;17:258–63.

    PubMed  Google Scholar 

  218. McCarville MB, Spunt SL, Skapek SX, et al. Synovial sarcoma in pediatric patients. AJR Am J Roentgenol. 2002;179:797–801.

    PubMed  Google Scholar 

  219. Coffin C. Synovial-based tumors and synovial sarcoma. In: Coffin CMOSP, Dehner LP, editors. Pediatric soft tissue tumors: a clinical, pathological and therapeutic approach. Baltimore, MD: Williams and Wilkins; 1997. p. 295–310.

    Google Scholar 

  220. Jones BC, Sundaram M, Kransdorf MJ. Synovial sarcoma: MR imaging findings in 34 patients. AJR Am J Roentgenol. 1993;161:827–30.

    CAS  PubMed  Google Scholar 

  221. Cadman NL, Soule EH, Kelly PJ. Synovial sarcoma; an analysis of 34 tumors. Cancer. 1965;18:613–27.

    CAS  PubMed  Google Scholar 

  222. Morton MJ, Berquist TH, McLeod RA, et al. MR imaging of synovial sarcoma. AJR Am J Roentgenol. 1991;156:337–40.

    CAS  PubMed  Google Scholar 

  223. Berquist TH, Ehman RL, King BF, et al. Value of MR imaging in differentiating benign from malignant soft-tissue masses: study of 95 lesions. AJR Am J Roentgenol. 1990;155:1251–5.

    CAS  PubMed  Google Scholar 

  224. Folpe AL, Schmidt RA, Chapman D, et al. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. Am J Surg Pathol. 1998;22:673–82.

    CAS  PubMed  Google Scholar 

  225. Kosemehmetoglu K, Vrana JA, Folpe AL. TLE1 expression is not specific for synovial sarcoma: a whole section study of 163 soft tissue and bone neoplasms. Mod Pathol. 2009;22:872–8.

    CAS  PubMed  Google Scholar 

  226. Fritsch MK, Bridge JA, Schuster AE, et al. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol. 2003;6:43–53.

    CAS  PubMed  Google Scholar 

  227. Sun B, Sun Y, Wang J, et al. The diagnostic value of SYT-SSX detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) for synovial sarcoma: a review and prospective study of 255 cases. Cancer Sci. 2008;99:1355–61.

    CAS  PubMed  Google Scholar 

  228. Oda Y, Hashimoto H, Tsuneyoshi M, et al. Survival in synovial sarcoma. A multivariate study of prognostic factors with special emphasis on the comparison between early death and long-term survival. Am J Surg Pathol. 1993;17:35–44.

    CAS  PubMed  Google Scholar 

  229. Lieberman PH, Brennan MF, Kimmel M, et al. Alveolar soft-part sarcoma. A clinico-pathologic study of half a century. Cancer. 1989;63:1–13.

    CAS  PubMed  Google Scholar 

  230. Pappo AS, Parham DM, Cain A, et al. Alveolar soft part sarcoma in children and adolescents: clinical features and outcome of 11 patients. Med Pediatr Oncol. 1996;26:81–4.

    CAS  PubMed  Google Scholar 

  231. Guillou L, Lamoureux E, Masse S, et al. Alveolar soft-part sarcoma of the uterine corpus: histological, immunocytochemical and ultrastructural study of a case. Virchows Arch A Pathol Anat Histopathol. 1991;418:467–71.

    CAS  PubMed  Google Scholar 

  232. Folpe AL, Deyrup AT. Alveolar soft-part sarcoma: a review and update. J Clin Pathol. 2006;59:1127–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Tucker JA. Crystal-deficient alveolar soft part sarcoma. Ultrastruct Pathol. 1993;17:279–86.

    CAS  PubMed  Google Scholar 

  234. Carstens HB. Membrane-bound cytoplasmic crystals, similar to those in alveolar soft part sarcoma, in a human muscle spindle. Ultrastruct Pathol. 1990;14:423–8.

    CAS  PubMed  Google Scholar 

  235. Sciot R, Dal Cin P, De Vos R, et al. Alveolar soft-part sarcoma: evidence for its myogenic origin and for the involvement of 17q25. Histopathology. 1993;23:439–44.

    CAS  PubMed  Google Scholar 

  236. Heller DS, Frydman CP, Gordon RE, et al. An unusual organoid tumor. Alveolar soft part sarcoma or paraganglioma? Cancer. 1991;67:1894–9.

    CAS  PubMed  Google Scholar 

  237. Ordonez NG. Alveolar soft part sarcoma: a review and update. Adv Anat Pathol. 1999;6:125–39.

    CAS  PubMed  Google Scholar 

  238. Wang NP, Bacchi CE, Jiang JJ, et al. Does alveolar soft-part sarcoma exhibit skeletal muscle differentiation? An immunocytochemical and biochemical study of myogenic regulatory protein expression. Mod Pathol. 1996;9:496–506.

    CAS  PubMed  Google Scholar 

  239. Wen MC, Jan YJ, Li MC, et al. Monotypic epithelioid angiomyolipoma of the liver with TFE3 expression. Pathology. 2010;42:300–2.

    PubMed  Google Scholar 

  240. Pang LJ, Chang B, Zou H, et al. Alveolar soft part sarcoma: a bimarker diagnostic strategy using TFE3 immunoassay and ASPL-TFE3 fusion transcripts in paraffin-embedded tumor tissues. Diagn Mol Pathol. 2008;17:245–52.

    CAS  PubMed  Google Scholar 

  241. Folpe AL, Goodman ZD, Ishak KG, et al. Clear cell myomelanocytic tumor of the falciform ligament/ligamentum teres: a novel member of the perivascular epithelioid clear cell family of tumors with a predilection for children and young adults. Am J Surg Pathol. 2000;24:1239–46.

    CAS  PubMed  Google Scholar 

  242. Sawyer JR, Nicholas RW, Parham DM. A novel t(X;2)(q13;q35) in clear cell sugar tumor of bone. Cancer Genet Cytogenet. 2004;154:77–80.

    CAS  PubMed  Google Scholar 

  243. Yamashita K, Fletcher CD. PEComa presenting in bone: clinicopathologic analysis of 6 cases and literature review. Am J Surg Pathol. 2010;34:1622–9.

    PubMed  Google Scholar 

  244. Hornick JL, Fletcher CD. Sclerosing PEComa: clinicopathologic analysis of a distinctive variant with a predilection for the retroperitoneum. Am J Surg Pathol. 2008;32:493–501.

    PubMed  Google Scholar 

  245. Cho HY, Chung DH, Khurana H, et al. The role of TFE3 in PEComa. Histopathology. 2008;53:236–49.

    CAS  PubMed  Google Scholar 

  246. Hornick JL, Fletcher CD. PEComa: what do we know so far? Histopathology. 2006;48:75–82.

    CAS  PubMed  Google Scholar 

  247. Folpe AL, Mentzel T, Lehr HA, et al. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29:1558–75.

    PubMed  Google Scholar 

  248. Wick MR, Ritter JH, Dehner LP. Malignant rhabdoid tumors: a clinicopathologic review and conceptual discussion. Semin Diagn Pathol. 1995;12:233–48.

    CAS  PubMed  Google Scholar 

  249. Parham DM, Weeks DA, Beckwith JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumors. An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol. 1994;18:1010–29.

    CAS  PubMed  Google Scholar 

  250. Hsueh C, Kuo TT. Congenital malignant rhabdoid tumor presenting as a cutaneous nodule: report of 2 cases with review of the literature. Arch Pathol Lab Med. 1998;122:1099–102.

    CAS  PubMed  Google Scholar 

  251. Abdullah A, Patel Y, Lewis TJ, et al. Extrarenal malignant rhabdoid tumors: radiologic findings with histopathologic correlation. Cancer Imaging. 2010;10:97–101.

    PubMed Central  PubMed  Google Scholar 

  252. Ferrari A, Orbach D, Sultan I, et al. Neonatal soft tissue sarcomas. Semin Fetal Neonatal Med. 2012;17:231–8.

    PubMed  Google Scholar 

  253. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35:e47–63.

    PubMed  Google Scholar 

  254. Hoot AC, Russo P, Judkins AR, et al. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol. 2004;28:1485–91.

    PubMed  Google Scholar 

  255. Eaton KW, Tooke LS, Wainwright LM, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56:7–15.

    PubMed Central  PubMed  Google Scholar 

  256. Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms' Tumor Study. Cancer. 1978;41:1937–48.

    CAS  PubMed  Google Scholar 

  257. Haas JE, Palmer NF, Weinberg AG, et al. Ultrastructure of malignant rhabdoid tumor of the kidney. A distinctive renal tumor of children. Hum Pathol. 1981;12:646–57.

    CAS  PubMed  Google Scholar 

  258. Weeks DA, Beckwith JB, Mierau GW, et al. Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms' Tumor Study Pathology Center. Am J Surg Pathol. 1989;13:439–58.

    CAS  PubMed  Google Scholar 

  259. Perry A, Fuller CE, Judkins AR, et al. INI1 expression is retained in composite rhabdoid tumors, including rhabdoid meningiomas. Mod Pathol. 2005;18:951–8.

    CAS  PubMed  Google Scholar 

  260. Douglass EC, Valentine M, Rowe ST, et al. Malignant rhabdoid tumor: a highly malignant childhood tumor with minimal karyotypic changes. Genes Chromosomes Cancer. 1990;2:210–6.

    CAS  PubMed  Google Scholar 

  261. Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus. 2006;20:E11.

    PubMed  Google Scholar 

  262. Sawyer JR, Goosen LS, Swanson CM, et al. A new reciprocal translocation (12;22)(q24.3;q11.2-12) in a malignant rhabdoid tumor of the brain. Cancer Genet Cytogenet. 1998;101:62–7.

    CAS  PubMed  Google Scholar 

  263. Bruch LA, Hill DA, Cai DX, et al. A role for fluorescence in situ hybridization detection of chromosome 22q dosage in distinguishing atypical teratoid/rhabdoid tumors from medulloblastoma/central primitive neuroectodermal tumors. Hum Pathol. 2001;32:156–62.

    CAS  PubMed  Google Scholar 

  264. Gururangan S, Bowman LC, Parham DM, et al. Primary extracranial rhabdoid tumors. Clinicopathologic features and response to ifosfamide. Cancer. 1993;71:2653–9.

    CAS  PubMed  Google Scholar 

  265. Jayaram A, Finegold MJ, Parham DM, et al. Successful management of rhabdoid tumor of the liver. J Pediatr Hematol Oncol. 2007;29:406–8.

    CAS  PubMed  Google Scholar 

  266. Gross E, Rao BN, Pappo A, et al. Epithelioid sarcoma in children. J Pediatr Surg. 1996;31:1663–5.

    CAS  PubMed  Google Scholar 

  267. Sugarbaker PH, Auda S, Webber BL, et al. Early distant metastases from epithelioid sarcoma of the hand. Cancer. 1981;48:852–5.

    CAS  PubMed  Google Scholar 

  268. Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33:542–50.

    PubMed  Google Scholar 

  269. Hanna SL, Kaste S, Jenkins JJ, et al. Epithelioid sarcoma: clinical, MR imaging and pathologic findings. Skeletal Radiol. 2002;31:400–12.

    CAS  PubMed  Google Scholar 

  270. Sakamoto A, Jono O, Hirahashi M, et al. Epithelioid sarcoma with muscle metastasis detected by positron emission tomography. World J Surg Oncol. 2008;6:84.

    PubMed Central  PubMed  Google Scholar 

  271. Mirra JM, Kessler S, Bhuta S, et al. The fibroma-like variant of epithelioid sarcoma. A fibrohistiocytic/myoid cell lesion often confused with benign and malignant spindle cell tumors. Cancer. 1992;69:1382–95.

    CAS  PubMed  Google Scholar 

  272. Perrone T, Swanson PE, Twiggs L, et al. Malignant rhabdoid tumor of the vulva: is distinction from epithelioid sarcoma possible? A pathologic and immunohistochemical study. Am J Surg Pathol. 1989;13:848–58.

    CAS  PubMed  Google Scholar 

  273. Arber DA, Kandalaft PL, Mehta P, et al. Vimentin-negative epithelioid sarcoma. The value of an immunohistochemical panel that includes CD34. Am J Surg Pathol. 1993;17:302–7.

    CAS  PubMed  Google Scholar 

  274. Gerharz CD, Moll R, Meister P, et al. Cytoskeletal heterogeneity of an epithelioid sarcoma with expression of vimentin, cytokeratins, and neurofilaments. Am J Surg Pathol. 1990;14:274–83.

    CAS  PubMed  Google Scholar 

  275. Cordoba JC, Parham DM, Meyer WH, et al. A new cytogenetic finding in an epithelioid sarcoma, t(8;22)(q22;q11). Cancer Genet Cytogenet. 1994;72:151–4.

    CAS  PubMed  Google Scholar 

  276. Raoux D, Peoc'h M, Pedeutour F, et al. Primary epithelioid sarcoma of bone: report of a unique case, with immunohistochemical and fluorescent in situ hybridization confirmation of INI1 deletion. Am J Surg Pathol. 2009;33:954–8.

    PubMed  Google Scholar 

  277. Chase DR, Enzinger FM. Epithelioid sarcoma. Diagnosis, prognostic indicators, and treatment. Am J Surg Pathol. 1985;9:241–63.

    CAS  PubMed  Google Scholar 

  278. Prat J, Woodruff JM, Marcove RC. Epithelioid sarcoma: an analysis of 22 cases indicating the prognostic significance of vascular invasion and regional lymph node metastasis. Cancer. 1978;41:1472–87.

    CAS  PubMed  Google Scholar 

  279. Spillane AJ, Thomas JM, Fisher C. Epithelioid sarcoma: the clinicopathological complexities of this rare soft tissue sarcoma. Ann Surg Oncol. 2000;7:218–25.

    CAS  PubMed  Google Scholar 

  280. Fisher C. Epithelioid sarcoma of enzinger. Adv Anat Pathol. 2006;13:114–21.

    PubMed  Google Scholar 

  281. Hisaoka M, Ishida T, Kuo TT, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.

    PubMed  Google Scholar 

  282. Lucas DR, Nascimento AG, Sim FH. Clear cell sarcoma of soft tissues. Mayo Clinic experience with 35 cases. Am J Surg Pathol. 1992;16:1197–204.

    CAS  PubMed  Google Scholar 

  283. Meis-Kindblom JM. Clear cell sarcoma of tendons and aponeuroses: a historical perspective and tribute to the man behind the entity. Adv Anat Pathol. 2006;13:286–92.

    PubMed  Google Scholar 

  284. Stacy GS, Nair L. Magnetic resonance imaging features of extremity sarcomas of uncertain differentiation. Clin Radiol. 2007;62:950–8.

    CAS  PubMed  Google Scholar 

  285. Davis IJ, Kim JJ, Ozsolak F, et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell. 2006;9:473–84.

    CAS  PubMed  Google Scholar 

  286. Jones RL, Constantinidou A, Thway K, et al. Chemotherapy in clear cell sarcoma. Med Oncol. 2011;28:859–63.

    PubMed  Google Scholar 

  287. Dabska M. Parachordoma: a new clinicopathologic entity. Cancer. 1977;40:1586–92.

    CAS  PubMed  Google Scholar 

  288. Gleason BC, Fletcher CD. Myoepithelial carcinoma of soft tissue in children: an aggressive neoplasm analyzed in a series of 29 cases. Am J Surg Pathol. 2007;31:1813–24.

    PubMed  Google Scholar 

  289. Huang CC, Cheng SM. Clinical and radiological presentations of pelvic parachordoma. Rare Tumors. 2012;4:e5.

    PubMed Central  PubMed  Google Scholar 

  290. Antonescu CR, Zhang L, Chang NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49:1114–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  291. Hornick JL, Fletcher CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol. 2003;27:1183–96.

    PubMed  Google Scholar 

  292. Tirabosco R, Mangham DC, Rosenberg AE, et al. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008;32:572–80.

    PubMed  Google Scholar 

  293. Lae ME, Roche PC, Jin L, et al. Desmoplastic small round cell tumor: a clinicopathologic, immunohistochemical, and molecular study of 32 tumors. Am J Surg Pathol. 2002;26:823–35.

    PubMed  Google Scholar 

  294. Gerald WL, Miller HK, Battifora H, et al. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol. 1991;15:499–513.

    CAS  PubMed  Google Scholar 

  295. Levy AD, Arnaiz J, Shaw JC, et al. From the archives of the AFIP: primary peritoneal tumors: imaging features with pathologic correlation. Radiographics. 2008;28:583–607. quiz 621–582.

    PubMed  Google Scholar 

  296. Zhang WD, Li CX, Liu QY, et al. CT, MRI, and FDG-PET/CT imaging findings of abdominopelvic desmoplastic small round cell tumors: correlation with histopathologic findings. Eur J Radiol. 2011;80:269–73.

    PubMed  Google Scholar 

  297. de Alava E, Ladanyi M, Rosai J, et al. Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. A specific diagnostic assay. Am J Pathol. 1995;147:1584–91.

    PubMed Central  PubMed  Google Scholar 

  298. Ordonez NG. Desmoplastic small round cell tumor: I: a histopathologic study of 39 cases with emphasis on unusual histological patterns. Am J Surg Pathol. 1998;22:1303–13.

    CAS  PubMed  Google Scholar 

  299. Alaggio R, Rosolen A, Sartori F, et al. Spindle cell tumor with EWS-WT1 transcript and a favorable clinical course: a variant of DSCT, a variant of leiomyosarcoma, or a new entity? Report of 2 pediatric cases. Am J Surg Pathol. 2007;31:454–9.

    PubMed  Google Scholar 

  300. Zhang PJ, Goldblum JR, Pawel BR, et al. Immunophenotype of desmoplastic small round cell tumors as detected in cases with EWS-WT1 gene fusion product. Mod Pathol. 2003;16:229–35.

    PubMed  Google Scholar 

  301. Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16:411–6.

    CAS  PubMed  Google Scholar 

  302. Al Balushi Z, Bulduc S, Mulleur C, et al. Desmoplastic small round cell tumor in children: a new therapeutic approach. J Pediatr Surg. 2009;44:949–52.

    PubMed  Google Scholar 

  303. Pawel BR, Hamoudi AB, Asmar L, et al. Undifferentiated sarcomas of children: pathology and clinical behavior – an Intergroup Rhabdomyosarcoma study. Med Pediatr Oncol. 1997;29:170–80.

    CAS  PubMed  Google Scholar 

  304. Kawamura-Saito M, Yamazaki Y, Kaneko K, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15:2125–37.

    CAS  PubMed  Google Scholar 

  305. Choi EY, Thomas DG, McHugh JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol. 2013;37:1379–86.

    PubMed  Google Scholar 

  306. Machado I, Cruz J, Lavernia J, et al. Superficial EWSR1-negative undifferentiated small round cell sarcoma with CIC/DUX4 gene fusion: a new variant of Ewing-like tumors with locoregional lymph node metastasis. Virchows Arch. 2013;463:837–42.

    CAS  PubMed  Google Scholar 

  307. Italiano A, Sung YS, Zhang L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51:207–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  308. Kajtar B, Tornoczky T, Kalman E, et al. CD99-positive undifferentiated round cell sarcoma diagnosed on fine needle aspiration cytology, later found to harbour a CIC-DUX4 translocation: a recently described entity. Cytopathology. 2014;25:129–32.

    Google Scholar 

Download references

Acknowledgment

The authors thank Ali Nael, M.D. for editorial review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Parham M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parham, D.M., Kaste, S.C., Raju, A., McCarville, M.B. (2015). Soft Tissue Sarcomas. In: Parham, D., Khoury, J., McCarville, M. (eds) Pediatric Malignancies: Pathology and Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1729-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1729-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1728-0

  • Online ISBN: 978-1-4939-1729-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics