Skip to main content

Tumors of the Adrenal Gland

  • 2168 Accesses

Abstract

Adrenal tumors, classified by their cellular origin and function, may arise from the medulla or cortex. In addition to those located in the adrenal glands, tumors originating from the neural crest may occur anywhere along the sympathetic nervous chain. Those arising from the adrenal medulla or extramedullary sites include neuroblastic tumors (neural crest origin) and the paraganglionic cells (pheochromocytoma and paraganglioma). Those arising from the cortex include adrenocortical carcinoma and adenoma. In this chapter, the initial imaging and pathologic features of the neuroblastic tumors, pheochromocytoma/paraganglioma, and adrenocortical carcinoma are emphasized. The role of imaging modalities from plain radiography and ultrasound to computed tomography, magnetic resonance imaging, and functional radionuclide imaging is discussed, including the relatively new International Neuroblastoma Risk Group Staging System to identify preoperative and pretreatment imaging-defined risk factors. The Pathology section reviews current concepts in histological classification, immunohistochemical markers, cytogenetics, and molecular genetics as pertaining to the diagnosis and prognosis of these tumors.

Keywords

  • Adrenal tumor
  • Radiology
  • Imaging
  • Nuclear medicine
  • Pathology
  • Neuroblastic tumors
  • Pheochromocytoma
  • Paraganglioma
  • Adrenocortical carcinoma

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ariel IM. Tumors of the peripheral nervous system. CA Cancer J Clin. 1983;33:282–99.

    CAS  PubMed  Google Scholar 

  2. Ilias I, Sahdev A, Reznek RH, et al. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr Relat Cancer. 2007;14:587–99.

    PubMed  Google Scholar 

  3. Balassy C, Navarro OM, Daneman A. Adrenal masses in children. Radiol Clin North Am. 2011;49:711–27, vi.

    PubMed  Google Scholar 

  4. Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children: current status and future applications. Eur J Radiol. 2008;68:289–98.

    PubMed  Google Scholar 

  5. Ley S, Ley-Zaporozhan J, Schenk JP. Whole-body MRI in the pediatric patient. Eur J Radiol. 2009;70:442–51.

    PubMed  Google Scholar 

  6. Goo HW. Whole-body MRI, of neuroblastoma. Eur J Radiol. 2010;75:306–14.

    PubMed  Google Scholar 

  7. Chavhan GB, Babyn PS. Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics. 2011;31:1757–72.

    PubMed  Google Scholar 

  8. Siegel MJ, Acharyya S, Hoffer FA, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology. 2013;266:599–609.

    PubMed Central  PubMed  Google Scholar 

  9. Koh DM, Blackledge M, Padhani AR, et al. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol. 2012;199:252–62.

    PubMed  Google Scholar 

  10. Deglint HJ, Rangayyan RM, Ayres FJ, et al. Three-dimensional segmentation of the tumor in computed tomographic images of neuroblastoma. J Digit Imaging. 2007;20:72–87.

    PubMed Central  Google Scholar 

  11. Benard J, Raguenez G, Kauffmann A, et al. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. Mol Oncol. 2008;2:261–71.

    PubMed  Google Scholar 

  12. Gurney JG, Ross JA, Wall DA, et al. Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. J Pediatr Hematol Oncol. 1997;19:428–32.

    CAS  PubMed  Google Scholar 

  13. Stiller CA, Parkin DM. International variations in the incidence of neuroblastoma. Int J Cancer. 1992;52:538–43.

    CAS  PubMed  Google Scholar 

  14. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–16.

    CAS  PubMed  Google Scholar 

  16. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24:65–86.

    PubMed  Google Scholar 

  17. Eng C. Cancer: a ringleader identified. Nature. 2008;455:883–4.

    CAS  PubMed  Google Scholar 

  18. Lonergan GJ, Schwab CM, Suarez ES, et al. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22:911–34.

    PubMed  Google Scholar 

  19. Garnier S, Maillet O, Haouy S, et al. Prenatal intrarenal neuroblastoma mimicking a mesoblastic nephroma: a case report. J Pediatr Surg. 2012;47:e21–3.

    PubMed  Google Scholar 

  20. Brisse HJ, McCarville MB, Granata C, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.

    PubMed  Google Scholar 

  21. D'Ambrosio N, Lyo JK, Young RJ, et al. Imaging of metastatic CNS neuroblastoma. AJR Am J Roentgenol. 2010;194:1223–9.

    PubMed  Google Scholar 

  22. Chu CM, Rasalkar DD, Hu YJ, et al. Clinical presentations and imaging findings of neuroblastoma beyond abdominal mass and a review of imaging algorithm. Br J Radiol. 2011;84:81–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Lee JY, Cho JY. Prenatal and postnatal imaging findings of congenital adrenal neuroblastoma. J Diagn Med Sonogr. 2004;20:138–43.

    Google Scholar 

  24. Houlihan C, Jampolsky M, Shilad A, et al. Prenatal diagnosis of neuroblastoma with sonography and magnetic resonance imaging. J Ultrasound Med. 2004;23:547–50.

    PubMed  Google Scholar 

  25. Nuchtern JG. Perinatal neuroblastoma. Semin Pediatr Surg. 2006;15:10–6.

    PubMed  Google Scholar 

  26. Deeg KH, Bettendorf U, Hofmann V. Differential diagnosis of neonatal adrenal haemorrhage and congenital neuroblastoma by colour coded Doppler sonography and power Doppler sonography. Eur J Pediatr. 1998;157:294–7.

    CAS  PubMed  Google Scholar 

  27. Baun J, Garcia K. Prenatal diagnosis of neuroblastoma: color doppler imaging may increase accuracy. J Diagn Med Sonogr. 2004;20:134–7.

    Google Scholar 

  28. Yamashina M, Kayan H, Katayama I, et al. Congenital neuroblastoma presenting as a paratesticular tumor. J Urol. 1988;139:796–7.

    CAS  PubMed  Google Scholar 

  29. Gallagher BL, Vibhakar R, Kao S, et al. Bilateral testicular masses: an unusual presentation of neuroblastoma. Urology. 2006;68:672. e615–77.

    PubMed  Google Scholar 

  30. Ichikawa T, Ohtomo K, Araki T, et al. Ganglioneuroma: computed tomography and magnetic resonance features. Br J Radiol. 1996;69:114–21.

    CAS  PubMed  Google Scholar 

  31. Day DL, Johnson R, Cohen MD. Abdominal neuroblastoma with inferior vena caval tumor thrombus: report of three cases (one with right atrial extension). Pediatr Radiol. 1991;21:205–7.

    CAS  PubMed  Google Scholar 

  32. Albregts AE, Cohen MD, Galliani CA. Neuroblastoma invading the kidney. J Pediatr Surg. 1994;29:930–3.

    CAS  PubMed  Google Scholar 

  33. Nour-Eldin NE, Abdelmonem O, Tawfik AM, et al. Pediatric primary and metastatic neuroblastoma: MRI findings: pictorial review. Magn Reson Imaging. 2012;30:893–906.

    PubMed  Google Scholar 

  34. Dietrich RB, Kangarloo H, Lenarsky C, et al. Neuroblastoma: the role of MR imaging. AJR Am J Roentgenol. 1987;148:937–42.

    CAS  PubMed  Google Scholar 

  35. Slovis TL, Meza MP, Cushing B, et al. Thoracic neuroblastoma: what is the best imaging modality for evaluating extent of disease? Pediatr Radiol. 1997;27:273–5.

    CAS  PubMed  Google Scholar 

  36. Siegel MJ, Ishwaran H, Fletcher BD, et al. Staging of neuroblastoma at imaging: report of the radiology diagnostic oncology group. Radiology. 2002;223:168–75.

    PubMed  Google Scholar 

  37. Zhang Y, Nishimura H, Kato S, et al. MRI of ganglioneuroma: histologic correlation study. J Comput Assist Tomogr. 2001;25:617–23.

    CAS  PubMed  Google Scholar 

  38. Mehta K, Haller JO, Legasto AC. Imaging neuroblastoma in children. Crit Rev Comput Tomogr. 2003;44:47–61.

    PubMed  Google Scholar 

  39. Gahr N, Darge K, Hahn G, et al. Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol. 2011;79:443–6.

    PubMed  Google Scholar 

  40. Mueller WP, Coppenrath E, Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol. 2013;43:418–27.

    PubMed  Google Scholar 

  41. Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med. 2011;41:345–53.

    PubMed  Google Scholar 

  42. Krishnamurthy G. Neuroblastoma: role of bone imaging. J Postgrad Med. 2004;50:260–1.

    Google Scholar 

  43. Howman-Giles RB, Gilday DL, Ash JM. Radionuclide skeletal survey in neuroblastoma. Radiology. 1979;131:497–502.

    CAS  PubMed  Google Scholar 

  44. Bousvaros A, Kirks DR, Grossman H. Imaging of neuroblastoma: an overview. Pediatr Radiol. 1986;16:89–106.

    CAS  PubMed  Google Scholar 

  45. Matthay KK, Edeline V, Lumbroso J, et al. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol. 2003;21:2486–91.

    PubMed  Google Scholar 

  46. Matthay KK, Shulkin B, Ladenstein R, et al. Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Naranjo A, Parisi MT, Shulkin BL, et al. Comparison of 123I-metaiodobenzylguanidine (MIBG) and 131I-MIBG semi-quantitative scores in predicting survival in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2011;56:1041–5.

    PubMed  Google Scholar 

  48. Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37:1464–8.

    CAS  PubMed  Google Scholar 

  49. Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    PubMed  Google Scholar 

  50. Solanki KK, Bomanji J, Moyes J, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:513–21.

    CAS  PubMed  Google Scholar 

  51. Jacobson AF, Deng H, Lombard J, et al. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95:2596–606.

    CAS  PubMed  Google Scholar 

  52. Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.

    PubMed  Google Scholar 

  53. Kushner BH, Yeung HW, Larson SM, et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: 18F fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;19:3397–405.

    CAS  PubMed  Google Scholar 

  54. Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45:1172–88.

    PubMed  Google Scholar 

  55. Papathanasiou ND, Gaze MN, Sullivan K, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52:519–25.

    CAS  PubMed  Google Scholar 

  56. Sharp SE, Shulkin BL, Gelfand MJ, et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.

    PubMed  Google Scholar 

  57. Melzer HI, Coppenrath E, Schmid I, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–58.

    PubMed  Google Scholar 

  58. Janoueix-Lerosey I, Schleiermacher G, Delattre O. Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene. 2010;29:1566–79.

    CAS  PubMed  Google Scholar 

  59. Gaultier C, Trang H, Dauger S, et al. Pediatric disorders with autonomic dysfunction: what role for PHOX2B? Pediatr Res. 2005;58:1–6.

    CAS  PubMed  Google Scholar 

  60. Mosse YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Bentires-Alj M, Kontaridis MI, Neel BG. Stops along the RAS pathway in human genetic disease. Nat Med. 2006;12:283–5.

    CAS  PubMed  Google Scholar 

  62. Denayer E, de Ravel T, Legius E. Clinical and molecular aspects of RAS related disorders. J Med Genet. 2008;45:695–703.

    CAS  PubMed  Google Scholar 

  63. Satge D, Moore SW, Stiller CA, et al. Abnormal constitutional karyotypes in patients with neuroblastoma: a report of four new cases and review of 47 others in the literature. Cancer Genet Cytogenet. 2003;147:89–98.

    CAS  PubMed  Google Scholar 

  64. Vandepoele K, Staes K, Andries V, et al. Chibby interacts with NBPF1 and clusterin, two candidate tumor suppressors linked to neuroblastoma. Exp Cell Res. 2010;316:1225–33.

    CAS  PubMed  Google Scholar 

  65. Diskin SJ, Hou C, Glessner JT, et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature. 2009;459:987–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Maris JM, Mosse YP, Bradfield JP, et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med. 2008;358:2585–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Capasso M, Devoto M, Hou C, et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet. 2009;41:718–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Peuchmaur M, d'Amore ES, Joshi VV, et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer. 2003;98:2274–81.

    PubMed  Google Scholar 

  69. Shimada H, Ambros IM, Dehner LP, et al. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999;86:349–63.

    CAS  PubMed  Google Scholar 

  70. Shimada H, Ambros IM, Dehner LP, et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999;86:364–72.

    CAS  PubMed  Google Scholar 

  71. Umehara S, Nakagawa A, Matthay KK, et al. Histopathology defines prognostic subsets of ganglioneuroblastoma, nodular. Cancer. 2000;89:1150–61.

    CAS  PubMed  Google Scholar 

  72. Wang LL, Suganuma R, Ikegaki N, et al. Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children's Oncology Group. Cancer. 2013;119(20):3718–26.

    PubMed  Google Scholar 

  73. Maris JM, Hogarty MD, Bagatell R, et al. Neuroblastoma. Lancet. 2007;369:2106–20.

    CAS  PubMed  Google Scholar 

  74. Attiyeh EF, London WB, Mosse YP, et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med. 2005;353:2243–53.

    CAS  PubMed  Google Scholar 

  75. Caron H, van Sluis P, de Kraker J, et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med. 1996;334:225–30.

    CAS  PubMed  Google Scholar 

  76. Plantaz D, Vandesompele J, Van Roy N, et al. Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int J Cancer. 2001;91:680–6.

    CAS  PubMed  Google Scholar 

  77. George RE, Attiyeh EF, Li S, et al. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One. 2007;2:e255.

    PubMed Central  PubMed  Google Scholar 

  78. Schleiermacher G, Michon J, Huon I, et al. Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br J Cancer. 2007;97:238–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Seeger RC, Brodeur GM, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313:1111–6.

    CAS  PubMed  Google Scholar 

  80. Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455:971–4.

    CAS  PubMed  Google Scholar 

  81. Brodeur GM, Nakagawara A, Yamashiro DJ, et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol. 1997;31:49–55.

    CAS  PubMed  Google Scholar 

  82. Ryden M, Sehgal R, Dominici C, et al. Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. Br J Cancer. 1996;74:773–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Yamashiro DJ, Nakagawara A, Ikegaki N, et al. Expression of TrkC in favorable human neuroblastomas. Oncogene. 1996;12:37–41.

    CAS  PubMed  Google Scholar 

  84. Nakagawara A, Azar CG, Scavarda NJ, et al. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol. 1994;14:759–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.

    PubMed Central  PubMed  Google Scholar 

  86. Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.

    PubMed Central  PubMed  Google Scholar 

  87. McCarville MB. Imaging neuroblastoma: what the radiologist needs to know. Cancer Imaging. 2011;11(Spec No A):S44–7.

    PubMed Central  PubMed  Google Scholar 

  88. Chen H, Sippel RS, O'Dorisio MS, et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39:775–83.

    PubMed Central  PubMed  Google Scholar 

  89. Barontini M, Levin G, Sanso G. Characteristics of pheochromocytoma in a 4- to 20-year-old population. Ann N Y Acad Sci. 2006;1073:30–7.

    PubMed  Google Scholar 

  90. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63:5615–21.

    CAS  PubMed  Google Scholar 

  91. Neumann HP, Erlic Z, Boedeker CC, et al. Clinical predictors for germline mutations in head and neck paraganglioma patients: cost reduction strategy in genetic diagnostic process as fall-out. Cancer Res. 2009;69:3650–6.

    CAS  PubMed  Google Scholar 

  92. Cascon A, Pita G, Burnichon N, et al. Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab. 2009;94:1701–5.

    CAS  PubMed  Google Scholar 

  93. Burnichon N, Rohmer V, Amar L, et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab. 2009;94:2817–27.

    CAS  PubMed  Google Scholar 

  94. Galan SR, Kann PH. Genetics and molecular pathogenesis of pheochromocytoma and paraganglioma. Clin Endocrinol (Oxf). 2013;78:165–75.

    CAS  Google Scholar 

  95. Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet. 2012;205:1–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Pacak K, Eisenhofer G, Ahlman H, et al. Pheochromocytoma: recommendations for clinical practice from the First International Symposium. October 2005. Nat Clin Pract Endocrinol Metab. 2007;3:92–102.

    PubMed  Google Scholar 

  97. Eisenhofer G, Tischler AS, de Krijger RR. Diagnostic tests and biomarkers for pheochromocytoma and extra-adrenal paraganglioma: from routine laboratory methods to disease stratification. Endocr Pathol. 2012;23:4–14.

    CAS  PubMed  Google Scholar 

  98. van der Harst E, de Herder WW, de Krijger RR, et al. The value of plasma markers for the clinical behaviour of phaeochromocytomas. Eur J Endocrinol. 2002;147:85–94.

    PubMed  Google Scholar 

  99. Rha SE, Byun JY, Jung SE, et al. Neurogenic tumors in the abdomen: tumor types and imaging characteristics. Radiographics. 2003;23:29–43.

    PubMed  Google Scholar 

  100. van der Harst E, de Herder WW, Bruining HA, et al. [123I]metaiodobenzylguanidine and [111In]octreotide uptake in begnign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86:685–93.

    PubMed  Google Scholar 

  101. Lee KY, Oh YW, Noh HJ, et al. Extraadrenal paragangliomas of the body: imaging features. AJR Am J Roentgenol. 2006;187:492–504.

    PubMed  Google Scholar 

  102. Ellison DA, Parham DM. Tumors of the autonomic nervous system. Am J Clin Pathol. 2001;115(Suppl):S46–55.

    PubMed  Google Scholar 

  103. Atalabi OM, Lee EY. Abdominal paraganglioma in a pediatric patient. Pediatr Radiol. 2008;38:592.

    PubMed  Google Scholar 

  104. Leung K, Stamm M, Raja A, et al. Pheochromocytoma: the range of appearances on ultrasound, CT, MRI, and functional imaging. AJR Am J Roentgenol. 2013;200:370–8.

    PubMed  Google Scholar 

  105. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.

    CAS  PubMed  Google Scholar 

  106. Forssell-Aronsson E, Schüller E, Ahlman H. Advances in the diagnostic imaging of pheochromocytomas. Rep Med Imag. 2011;4:19–37.

    Google Scholar 

  107. Jiang L, Schipper ML, Li P, et al. 123I-labeled metaiodobenzylguanidine for diagnosis of neuroendocrine tumors. Rep Med Imag. 2009;2:79–89.

    Google Scholar 

  108. Johnson PT, Horton KM, Fishman EK. Adrenal mass imaging with multidetector CT: pathologic conditions, pearls, and pitfalls. Radiographics. 2009;29:1333–51.

    PubMed  Google Scholar 

  109. Elsayes KM, Narra VR, Leyendecker JR, et al. MRI of adrenal and extraadrenal pheochromocytoma. AJR Am J Roentgenol. 2005;184:860–7.

    PubMed  Google Scholar 

  110. Jacques AE, Sahdev A, Sandrasagara M, et al. Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function. Eur Radiol. 2008;18:2885–92.

    PubMed  Google Scholar 

  111. Ilias I, Yu J, Carrasquillo JA, et al. Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab. 2003;88:4083–7.

    CAS  PubMed  Google Scholar 

  112. Meyer-Rochow GY, Schembri GP, Benn DE, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (MIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol. 2010;17:392–400.

    PubMed  Google Scholar 

  113. Lumachi F, Tregnaghi A, Zucchetta P, et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun. 2006;27:583–7.

    PubMed  Google Scholar 

  114. Shapiro B, Gross MD, Shulkin B. Radioisotope diagnosis and therapy of malignant pheochromocytoma. Trends Endocrinol Metab. 2001;12:469–75.

    CAS  PubMed  Google Scholar 

  115. Grogan RH, Mitmaker EJ, Duh QY. Changing paradigms in the treatment of malignant pheochromocytoma. Cancer Control. 2011;18:104–12.

    PubMed  Google Scholar 

  116. Boland GW, Dwamena BA, Jagtiani Sangwaiya M, et al. Characterization of adrenal masses by using FDG PET: a systematic review and meta-analysis of diagnostic test performance. Radiology. 2011;259:117–26.

    PubMed  Google Scholar 

  117. Taieb D, Sebag F, Barlier A, et al. 18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature? J Nucl Med. 2009;50:711–7.

    CAS  PubMed  Google Scholar 

  118. Brink I, Schaefer O, Walz M, et al. Fluorine-18 DOPA PET imaging of paraganglioma syndrome. Clin Nucl Med. 2006;31:39–41.

    PubMed  Google Scholar 

  119. Levine DS, Metzger DL, Nadel HR, et al. Novel use of F-DOPA PET/CT imaging in a child with paraganglioma/pheochromocytoma syndrome. Pediatr Radiol. 2011;41:1321–5.

    PubMed  Google Scholar 

  120. Waguespack SG, Rich T, Grubbs E, et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2010;95:2023–37.

    CAS  PubMed  Google Scholar 

  121. Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res. 2012;44:328–33.

    CAS  PubMed  Google Scholar 

  122. Burnichon N, Vescovo L, Amar L, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20:3974–85.

    CAS  PubMed  Google Scholar 

  123. Walther MM, Reiter R, Keiser HR, et al. Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol. 1999;162:659–64.

    CAS  PubMed  Google Scholar 

  124. Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med. 2009;266:19–42.

    CAS  PubMed  Google Scholar 

  125. Sun F, Huo X, Zhai Y, et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 2005;121:1043–57.

    CAS  PubMed  Google Scholar 

  126. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    CAS  PubMed  Google Scholar 

  127. Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69:49–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Heutink P, van der Mey AG, Sandkuijl LA, et al. A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum Mol Genet. 1992;1:7–10.

    CAS  PubMed  Google Scholar 

  129. Bayley JP, Kunst HP, Cascon A, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11:366–72.

    CAS  PubMed  Google Scholar 

  130. Qin Y, Yao L, King EE, et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42:229–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43:663–7.

    CAS  PubMed  Google Scholar 

  132. Barletta JA, Hornick JL. Succinate dehydrogenase-deficient tumors: diagnostic advances and clinical implications. Adv Anat Pathol. 2012;19:193–203.

    CAS  PubMed  Google Scholar 

  133. Sandgren J, Andersson R, Rada-Iglesias A, et al. Integrative epigenomic and genomic analysis of malignant pheochromocytoma. Exp Mol Med. 2010;42:484–502.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Brouwers FM, Elkahloun AG, Munson PJ, et al. Gene expression profiling of benign and malignant pheochromocytoma. Ann N Y Acad Sci. 2006;1073:541–56.

    CAS  PubMed  Google Scholar 

  135. Eisenhofer G, Bornstein SR, Brouwers FM, et al. Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer. 2004;11:423–36.

    CAS  PubMed  Google Scholar 

  136. Thompson LD. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol. 2002;26:551–66.

    PubMed  Google Scholar 

  137. Wu D, Tischler AS, Lloyd RV, et al. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol. 2009;33:599–608.

    PubMed  Google Scholar 

  138. Szalat A, Fraenkel M, Doviner V, et al. Malignant pheochromocytoma: predictive factors of malignancy and clinical course in 16 patients at a single tertiary medical center. Endocrine. 2011;39:160–6.

    CAS  PubMed  Google Scholar 

  139. Eisenhofer G, Lenders JW, Siegert G, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer. 2012;48:1739–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Custodio G, Komechen H, Figueiredo FR, et al. Molecular epidemiology of adrenocortical tumors in southern Brazil. Mol Cell Endocrinol. 2012;351:44–51.

    CAS  PubMed  Google Scholar 

  141. Rodriguez-Galindo C, Figueiredo BC, Zambetti GP, et al. Biology, clinical characteristics, and management of adrenocortical tumors in children. Pediatr Blood Cancer. 2005;45:265–73.

    PubMed  Google Scholar 

  142. Wasserman JD, Zambetti GP, Malkin D. Towards an understanding of the role of p53 in adrenocortical carcinogenesis. Mol Cell Endocrinol. 2012;351:101–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Ribeiro RC, Sandrini F, Figueiredo B, et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci U S A. 2001;98:9330–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Garritano S, Gemignani F, Palmero EI, et al. Detailed haplotype analysis at the TP53 locus in p.R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum Mutat. 2010;31:143–50.

    CAS  PubMed  Google Scholar 

  145. Martinez Leon MI, Romero Chaparro S, Weil Lara B. et al. Adrenocortical tumors in children: imaging adenomas and carcinomas. Radiologia. 2012;54:342–9.

    CAS  PubMed  Google Scholar 

  146. Ribeiro RC, Michalkiewicz EL, Figueiredo BC, et al. Adrenocortical tumors in children. Braz J Med Biol Res. 2000;33:1225–34.

    CAS  PubMed  Google Scholar 

  147. Daneman A, Chan HS, Martin J. Adrenal carcinoma and adenoma in children: a review of 17 patients. Pediatr Radiol. 1983;13:11–8.

    CAS  PubMed  Google Scholar 

  148. Prando A, Wallace S, Marins JL, et al. Sonographic findings of adrenal cortical carcinomas in children. Pediatr Radiol. 1990;20:163–5. discussion 169.

    CAS  PubMed  Google Scholar 

  149. Ribeiro J, Ribeiro RC, Fletcher BD. Imaging findings in pediatric adrenocortical carcinoma. Pediatr Radiol. 2000;30:45–51.

    CAS  PubMed  Google Scholar 

  150. Bharwani N, Rockall AG, Sahdev A, et al. Adrenocortical carcinoma: the range of appearances on CT and MRI. AJR Am J Roentgenol. 2011;196:W706–14.

    PubMed  Google Scholar 

  151. Godine LB, Berdon WE, Brasch RC, et al. Adrenocortical carcinoma with extension into inferior vena cava and right atrium: report of 3 cases in children. Pediatr Radiol. 1990;20:166–8. discussion 169.

    CAS  PubMed  Google Scholar 

  152. Groussin L, Bonardel G, Silvera S, et al. 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab. 2009;94:1713–22.

    CAS  PubMed  Google Scholar 

  153. Lacroix A. Approach to the patient with adrenocortical carcinoma. J Clin Endocrinol Metab. 2010;95:4812–22.

    CAS  PubMed  Google Scholar 

  154. Allolio B, Fassnacht M. Clinical review: adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab. 2006;91:2027–37.

    CAS  PubMed  Google Scholar 

  155. Dehner LP, Hill DA. Adrenal cortical neoplasms in children: why so many carcinomas and yet so many survivors? Pediatr Dev Pathol. 2009;12:284–91.

    PubMed  Google Scholar 

  156. West AN, Neale GA, Pounds S, et al. Gene expression profiling of childhood adrenocortical tumors. Cancer Res. 2007;67:600–8.

    CAS  PubMed  Google Scholar 

  157. Assie G, Guillaud-Bataille M, Ragazzon B, et al. The pathophysiology, diagnosis and prognosis of adrenocortical tumors revisited by transcriptome analyses. Trends Endocrinol Metab. 2010;21:325–34.

    CAS  PubMed  Google Scholar 

  158. Lorea CF, Moreno DA, Borges KS, et al. Expression profile of apoptosis-related genes in childhood adrenocortical tumors: low level of expression of BCL2 and TNF genes suggests a poor prognosis. Eur J Endocrinol. 2012;167:199–208.

    CAS  PubMed  Google Scholar 

  159. Simon DP, Hammer GD. Adrenocortical stem and progenitor cells: implications for adrenocortical carcinoma. Mol Cell Endocrinol. 2012;351:2–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Hough AJ, Hollifield JW, Page DL, et al. Prognostic factors in adrenal cortical tumors. A mathematical analysis of clinical and morphologic data. Am J Clin Pathol. 1979;72:390–9.

    CAS  PubMed  Google Scholar 

  161. Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol. 1984;8:163–9.

    CAS  PubMed  Google Scholar 

  162. Wieneke JA, Thompson LD, Heffess CS. Adrenal cortical neoplasms in the pediatric population: a clinicopathologic and immunophenotypic analysis of 83 patients. Am J Surg Pathol. 2003;27:867–81.

    PubMed  Google Scholar 

  163. Sasano HNY, Moriya T, Suzuki T. Adrenal cortex. In: Lloyd R, editor. Endocrine pathology: differential diagnosis and molecular advances. New York: Springer; 2010. p. 261–79.

    Google Scholar 

  164. Bugg MF, Ribeiro RC, Roberson PK, et al. Correlation of pathologic features with clinical outcome in pediatric adrenocortical neoplasia. A study of a Brazilian population. Brazilian Group for Treatment of Childhood Adrenocortical Tumors. Am J Clin Pathol. 1994;101:625–9.

    CAS  PubMed  Google Scholar 

  165. Loncarevic IF, Hering A, Posorski N, et al. Number of genomic imbalances correlates with the overall survival for adrenocortical cancer in childhood. Pediatr Blood Cancer. 2008;51:356–62.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pinto-Rojas M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kao, S.CS., Pinto-Rojas, A. (2015). Tumors of the Adrenal Gland. In: Parham, D., Khoury, J., McCarville, M. (eds) Pediatric Malignancies: Pathology and Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1729-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1729-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1728-0

  • Online ISBN: 978-1-4939-1729-7

  • eBook Packages: MedicineMedicine (R0)