Skip to main content

Female Reproductive System

  • Chapter
  • First Online:
Well-Differentiated Malignancies

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The ectocervix of the adult female is lined by a nonkeratizing squamous epithelium which shows cyclical changes in response to local steroid hormonal levels [1]. ER and PR are present in the epithelium and stromal fibroblasts. The endocervix is covered by a mucinous columnar epithelium which also invaginates to line the cleft-like structures in the stroma (endocervical glands). The glandular clefts are arranged in a collateral tunnellike pattern and usually penetrate less than 5 mm from the surface (but can be as deep as 1 cm). In contrast to the marked cyclic morphological changes in the ectocervical squamous cells, the columnar cells manifest minimal cytological changes. Instead, it shows dramatic variations in the production of secretion during the menstrual cycle. Importantly, mitotic activity is extremely rare in benign nongravid columnar epithelium. The subepithelial microvessel network of the endocervix is better developed than that of the ectocervix and the glandular structures largely shun from larger vessels and nerve bundles [2]. Furthermore, the endocervical stroma has twice as many stromal cells as does the ectocervical counterpart. The stromal cell from the two regions has different immunohistochemical features with the former showing reactivity for SMA and the latter for desmin. Moreover, the normal stroma also contains a dense network of CD34+ fibrocytes which are more predominantly located in the subepithelial and perivascular areas. In deep locations of the stroma, smooth muscle fibers are present and they are usually surrounded by CD34+ stromal cells [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendrickson MR, Atkins KA, Kempson RL. Chapter 41. Uterus and fallopian tubes. In: Mills SE, editor. Histology for pathologist. 3rd ed. Philadelphia: Lippincott Williams & Wilkins/Wolters Kluwer Business; 2007. p. 1011–62.

    Google Scholar 

  2. Wheeler DT, Kurman RJ. The relationship of glands to thick-wall blood vessels as a marker of invasion in endocervical adenocarcinoma. Int J Gynecol Pathol. 2005;24(2):125–30.

    Article  PubMed  Google Scholar 

  3. Kling E, et al. The 2 stromal compartments of the normal cervix with distinct immunophenotypic and histomorphologic features. Ann Diagn Pathol. 2012;16(5):315–22.

    Article  PubMed  Google Scholar 

  4. Andersson S, et al. Estrogen and progesterone metabolism in the cervix during pregnancy and parturition. J Clin Endocrinol Metab. 2008;93(6):2366–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Timmons BC, et al. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology. 2007;148(3):1278–87.

    Article  PubMed  CAS  Google Scholar 

  6. Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 2010;21(6):353–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Barth PJ, Ramaswamy A, Moll R. CD34 (+) fibrocytes in normal cervical stroma, cervical intraepithelial neoplasia III, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch. 2002;441(6):564–8.

    Article  PubMed  Google Scholar 

  8. Li Q, Huang W, Zhou X. Expression of CD34, alpha-smooth muscle actin and transforming growth factor-beta1 in squamous intraepithelial lesions and squamous cell carcinoma of the cervix. J Int Med Res. 2009;37(2):446–54.

    Article  PubMed  CAS  Google Scholar 

  9. Zayour M, Lazova R. Pseudoepitheliomatous hyperplasia: a review. Am J Dermatopathol. 2011;33(2):112–22; quiz 123–6.

    Article  PubMed  Google Scholar 

  10. El-Khoury J, Kibbi AG, Abbas O. Mucocutaneous pseudoepitheliomatous hyperplasia: a review. Am J Dermatopathol. 2012;34(2):165–75.

    Article  PubMed  Google Scholar 

  11. Kindelberger DW, Krane JF, Lee KR. Chapter 14. Glandular neoplasia of the cervix. In: Crum CP, Nucci MR, Lee KR, editors. Diagnostic gynecologic and obstetric pathology. Philadelphia: Saunders/Elsevier; 2011. p. 328–78.

    Chapter  Google Scholar 

  12. Nara M, et al. Lobular endocervical glandular hyperplasia as a presumed precursor of cervical adenocarcinoma independent of human papillomavirus infection. Gynecol Oncol. 2007;106(2):289–98.

    Article  PubMed  Google Scholar 

  13. Kawauchi S, et al. Is lobular endocervical glandular hyperplasia a cancerous precursor of minimal deviation adenocarcinoma? A comparative molecular-genetic and immunohistochemical study. Am J Surg Pathol. 2008;32(12):1807–15.

    Article  PubMed  Google Scholar 

  14. Danilova NV, et al. Markers of stromal invasion during background and precancerous changes of the glandular epithelium and in adenocarcinoma of the cervix uteri. Arkh Patol. 2012;74(4):28–33.

    PubMed  CAS  Google Scholar 

  15. Jordan SM, et al. Desmoplastic stromal response as defined by positive alpha-smooth muscle actin staining is predictive of invasion in adenocarcinoma of the uterine cervix. Int J Gynecol Pathol. 2012;31(4):369–76.

    Article  PubMed  Google Scholar 

  16. McCluggage WG. New developments in endocervical glandular lesions. Histopathology. 2013;62(1):138–60.

    Article  PubMed  Google Scholar 

  17. McCluggage WG. Endocervical glandular lesions: controversial aspects and ancillary techniques. J Clin Pathol. 2003;56(3):164–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kwasniewska A, et al. Estrogen and progesterone receptor expression in HPV-positive and HPV-negative cervical carcinomas. Oncol Rep. 2011;26(1):153–60.

    PubMed  Google Scholar 

  19. Nonogaki H, et al. Estrogen receptor localization in normal and neoplastic epithelium of the uterine cervix. Cancer. 1990;66(12):2620–7.

    Article  PubMed  CAS  Google Scholar 

  20. Bekkers RL, et al. Down regulation of estrogen receptor expression is an early event in human papillomavirus infected cervical dysplasia. Eur J Gynaecol Oncol. 2005;26(4):376–82.

    PubMed  CAS  Google Scholar 

  21. Zamecnik M. Hormone receptors in microglandular hyperplasia of the uterine cervix. Int J Gynecol Pathol. 2002;21(4):424–5.

    Article  PubMed  Google Scholar 

  22. Kondo T, et al. Gastric mucin is expressed in a subset of endocervical tunnel clusters: type A tunnel clusters of gastric phenotype. Histopathology. 2007;50(7):843–50.

    Article  PubMed  CAS  Google Scholar 

  23. Tsuji T, et al. Uterine cervical carcinomas associated with lobular endocervical glandular hyperplasia. Histopathology. 2011;59(1):55–62.

    Article  PubMed  Google Scholar 

  24. Mikami Y, et al. Lobular endocervical glandular hyperplasia is a metaplastic process with a pyloric gland phenotype. Histopathology. 2001;39(4):364–72.

    Article  PubMed  CAS  Google Scholar 

  25. Dainty LA, et al. Diffuse laminar endocervical glandular hyperplasia: a case report. Int J Gynecol Cancer. 2009;19(6):1091–3.

    Article  PubMed  Google Scholar 

  26. Rabban JT, et al. PAX2 distinguishes benign mesonephric and mullerian glandular lesions of the cervix from endocervical adenocarcinoma, including minimal deviation adenocarcinoma. Am J Surg Pathol. 2010;34(2):137–46.

    Article  PubMed  Google Scholar 

  27. Bigsby RM. Control of growth and differentiation of the endometrium: the role of tissue interactions. Ann N Y Acad Sci. 2002;955:110–7; discussion 118, 396–406.

    Article  PubMed  CAS  Google Scholar 

  28. Morelli SS, Yi P, Goldsmith LT. Endometrial stem cells and reproduction. Obstet Gynecol Int. 2012;2012:851367.

    PubMed  PubMed Central  Google Scholar 

  29. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16(11):818–34.

    Article  PubMed  CAS  Google Scholar 

  30. McCluggage GW. Chapter 7. Benign diseases of the endometrium. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. Chicago: Springer; 2010. p. 305–58.

    Google Scholar 

  31. Girling JE, Rogers PA. Recent advances in endometrial angiogenesis research. Angiogenesis. 2005;8(2):89–99.

    Article  PubMed  Google Scholar 

  32. Mandala M, Osol G. Physiological remodelling of the maternal uterine circulation during pregnancy. Basic Clin Pharmacol Toxicol. 2012;110(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  33. Matsubara Y, Matsubara K. Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation. Reprod Biol Endocrinol. 2012;10:2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ellensen LH, et al. Chapter 9. Endometrial carcinoma. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. Chicago: Springer; 2010. p. 393–452.

    Google Scholar 

  35. Tafe LJ, et al. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol. 2010;23(6):781–9.

    Article  PubMed  CAS  Google Scholar 

  36. Silva EG, et al. Association of low-grade endometrioid carcinoma of the uterus and ovary with undifferentiated carcinoma: a new type of dedifferentiated carcinoma? Int J Gynecol Pathol. 2006;25(1):52–8.

    Article  PubMed  Google Scholar 

  37. Crum CP, Duska LR, Nucci MR. Chapter 19. Adenocarcinoma, carcinosarcoma and other epithelial tumors of the endometrium. In: Crum CP, Nucci MR, Lee KR, editors. Diagnostic gynecologic and obstetric pathology. Philadelphia: Saunders/Elsevier; 2011. p. 517–81.

    Chapter  Google Scholar 

  38. Quade BJ, Nucci MR. Chapter 20. Uterine mesenchymal tumors. In: Crum CP, Nucci MR, Lee KR, editors. Diagnostic gynecologic and obstetric pathology. Philadelphia: Saunders/Elsevier; 2011. p. 582–639.

    Google Scholar 

  39. Gong J, et al. Correlation of thrombomodulin expression and occlusion of the uterine artery for the treatment of leiomyoma. Eur J Obstet Gynecol Reprod Biol. 2011;154(2):192–5.

    Article  PubMed  CAS  Google Scholar 

  40. Chen CL, et al. Characteristics of vascular supply to uterine leiomyoma: an analysis of digital subtraction angiography imaging in 518 cases. Eur Radiol. 2013;23(3):774–9.

    Article  PubMed  Google Scholar 

  41. Chiang S, Oliva E. Recent developments in uterine mesenchymal neoplasms. Histopathology. 2013;62(1):124–37.

    Article  PubMed  Google Scholar 

  42. Zaloudek CJ, Hendrickson MR, Soslow RA. Mesenchymal tumors of the uterus. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. New York: Springer; 2011. p. 453–528.

    Chapter  Google Scholar 

  43. Palma GA, et al. Biology and biotechnology of follicle development. Sci World J. 2012;2012:9138138.

    Article  Google Scholar 

  44. Orisaka M, et al. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hummitzsch K, et al. A new model of development of the mammalian ovary and follicles. PLoS One. 2013;8(2):e55578.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Okamura H, et al. Structural changes and cell properties of human ovarian surface epithelium in ovarian pathophysiology. Microsc Res Tech. 2006;69(6):469–81.

    Article  PubMed  Google Scholar 

  47. Auersperg N. Ovarian surface epithelium as a source of ovarian cancers: unwarranted speculation or evidence-based hypothesis? Gynecol Oncol. 2013;130(1):246–51.

    Article  PubMed  Google Scholar 

  48. Worley MJ, et al. Endometriosis-associated ovarian cancer: a review of pathogenesis. Int J Mol Sci. 2013;14(3):5367–79.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Akahane T, et al. The origin of stroma surrounding epithelial ovarian cancer cells. Int J Gynecol Pathol. 2012;32(1):26–30.

    Article  Google Scholar 

  50. Schauer IG, et al. Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia. 2011;13(5):393–405.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Lai D, Ma L, Wang F. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. Int J Oncol. 2012;41(2):541–50.

    PubMed  CAS  Google Scholar 

  52. Seidman JD, Cho KR, Ronnett BM, Kurman RJ. Chapter 14. Surface epithelial tumors of the ovary. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. Chicago: Springer; 2010. p. 393–452.

    Google Scholar 

  53. Nucci MR, Curm CR, Lee KR. Chapter 27. The pathology of pelvic-ovarian epithelial (epithelial-stromal) tumors. In: Crum CP, Nucci MR, Lee KR, editors. Diagnostic gynecologic and obstetric pathology. Philadelphia: Saunders/Elsevier; 2011. p. 818–95.

    Chapter  Google Scholar 

  54. Lerwill MF, Young RH. Chapter 18. Metastatic tumors of the ovary. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. Chicago: Springer; 2010. p. 929–98.

    Google Scholar 

  55. Hirsh MS. Chapter 31. Metastatic tumors to the ovary. In: Crum CP, Nucci MR, Lee KR, editors. Diagnostic gynecologic and obstetric pathology. Philadelphia: Saunders/Elsevier; 2011. p. 972–88.

    Chapter  Google Scholar 

  56. Ribe A, Larrosa C, Carasus L, Palacios J, Prat J. Brenner tumors but not transitional cell carcinomas of the ovary show dysregulation of cell cycle G1-S phase transition. Mod Pathol. 2006;19S1:194A.

    Google Scholar 

  57. Prat J. Chapter 25. Ovarian Endometrioid, Clear Cell, Brenner and Rare Epithelial Stromal Tumors. In: Robboy SJ et al., editors. Robboy’s Pathology of the Female Reproductive Tract. Philadelphia: Churchill Livingstone/Elsevier; 2009. p. 655–92.

    Chapter  Google Scholar 

  58. Riedel I, et al. Brenner tumors but not transitional cell carcinomas of the ovary show urothelial differentiation: immunohistochemical staining of urothelial markers, including cytokeratins and uroplakins. Virchows Arch. 2001;438(2):181–91.

    Article  PubMed  CAS  Google Scholar 

  59. Cuatrecasas M, et al. Transitional cell tumors of the ovary: a comparative clinicopathologic, immunohistochemical, and molecular genetic analysis of Brenner tumors and transitional cell carcinomas. Am J Surg Pathol. 2009;33(4):556–67.

    Article  PubMed  Google Scholar 

  60. Young RH, Scully RE. Ovarian Sertoli-Leydig cell tumors. A clinicopathological analysis of 207 cases. Am J Surg Pathol. 1985;9(8):543–69.

    Article  PubMed  CAS  Google Scholar 

  61. Nakashima N, Young RH, Scully RE. Androgenic granulosa cell tumors of the ovary. A clinicopathologic analysis of 17 cases and review of the literature. Arch Pathol Lab Med. 1984;108(10):786–91.

    PubMed  CAS  Google Scholar 

  62. Sternberg WH. The morphology, androgenic function, hyperplasia, and tumors of the human ovarian hilus cells. Am J Pathol. 1949;25(3):493–521.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, X. (2015). Female Reproductive System. In: Well-Differentiated Malignancies. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1692-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1692-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1691-7

  • Online ISBN: 978-1-4939-1692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics