Skip to main content

The Genitourinary System

  • Chapter
  • First Online:
  • 790 Accesses

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The normal renal parenchyma is composed of tightly packed tubules and glomeruli which are delimited by a capsule. The tubules are situated on a thin basement membrane which is supported by a complex network of specialized interstitial fibroblasts [1, 2]. The interstitial cells also play important roles in the modulation of hemodynamic tubular reabsorption and erythropoietin production. There are at least two types of cortical interstitial cells and three types of medullary interstitial cells to accommodate the normal function of the organ. Importantly, the type 1 medullary interstitial cells are characterized by their prominent lipid storage capabilities and peroxidase activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brenner BM. Chapter 2. Anatomy of the kidney. In: Brenner & Rector’s the kidney, vol. 1. 8th ed. Philadelphia: Saunders/Elsevier; 2011. p. 25–85.

    Google Scholar 

  2. Kaissling B, Le Hir M. The renal cortical interstitium: morphological and functional aspects. Histochem Cell Biol. 2008;130(2):247–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pinthus JH, et al. Metabolic features of clear-cell renal cell carcinoma: mechanisms and clinical implications. Can Urol Assoc J. 2011;5(4):274–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7(5):277–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Murphy WM, Grignon DJ, Perlman EJ. Chapter 1. Kidney tumors in children. In: Tumors of the kidney, bladder, and related urinary structures. Washington, DC: American Registry of Pathology; 2004. p. 1–101.

    Google Scholar 

  6. Kirkali Z, Yorukoglu K. Premalignant lesions in the kidney. Sci World J. 2001;1:855–67.

    Article  CAS  Google Scholar 

  7. Wang KL, et al. Renal papillary adenoma–a putative precursor of papillary renal cell carcinoma. Hum Pathol. 2007;38(2):239–46.

    Article  PubMed  CAS  Google Scholar 

  8. Van Poppel H, et al. Precancerous lesions in the kidney. Scand J Urol Nephrol Suppl. 2000;205:136–65.

    Article  PubMed  Google Scholar 

  9. Reule S, Gupta S. Kidney regeneration and resident stem cells. Organogenesis. 2011;7(2):135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ponnusamy M, Ma L, Zhuang S. Necrotic renal epithelial cell inhibits renal interstitial fibroblast activation: role of protein tyrosine phosphatase 1B. Am J Physiol Renal Physiol. 2013;304(6):F698–709.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Maruyama E, et al. Involvement of angiopoietins in cancer progression in association with cancer cell–fibroblast interaction. Anticancer Res. 2005;25(1A):171–7.

    PubMed  CAS  Google Scholar 

  12. Yamauchi M, et al. Hepatocyte growth factor activator inhibitor types 1 and 2 are expressed by tubular epithelium in kidney and down-regulated in renal cell carcinoma. J Urol. 2004;171(2 Pt 1):890–6.

    Article  PubMed  CAS  Google Scholar 

  13. Tostain J, et al. Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer. 2010;46(18):3141–8.

    Article  PubMed  CAS  Google Scholar 

  14. Banerjee P, et al. Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules. J Biol Chem. 2012;287(38):32113–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bastola P, et al. Folliculin contributes to VHL tumor suppressing activity in renal cancer through regulation of autophagy. PLoS One. 2013;8(7):e70030.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wang Z, Choi ME. Autophagy in kidney health and disease. Antioxid Redox Signal. 2014;20(3):59–37.

    Google Scholar 

  17. Maclennan GT, Cheng L. Chapter 2. Neoplasms of the kidney. In: Bostwick DG, Cheng L, editors. Urologic surgical pathology. 2nd ed. London: Mosby/Elsevier; 2008. p. 77–172.

    Google Scholar 

  18. Kim MK, Kim S. Immunohistochemical profile of common epithelial neoplasms arising in the kidney. Appl Immunohistochem Mol Morpholo. 2002;10:332–8.

    Google Scholar 

  19. Murphy WM, Grignon DJ, Perlman EJ. In: Silverberg SG, editor. Tumors of the kidney, bladder, and related urinary structures, AFIP atlas of tumor pathology series 4. Washington, DC: American Registry of Pathology; 2004. Chapter 2: Kidney tumors in Adults.

    Google Scholar 

  20. Tretiakova MS, et al. Expression of alpha-methylacyl-CoA racemase in papillary renal cell carcinoma. Am J Surg Pathol. 2004;28(1):69–76.

    Article  PubMed  Google Scholar 

  21. Shen SS, et al. Mucinous tubular and spindle cell carcinoma of kidney is probably a variant of papillary renal cell carcinoma with spindle cell features. Ann Diagn Pathol. 2007;11(1):13–21.

    Article  PubMed  Google Scholar 

  22. Balamurugan K, et al. Onconeuronal cerebellar degeneration-related antigen, Cdr2, is strongly expressed in papillary renal cell carcinoma and leads to attenuated hypoxic response. Oncogene. 2009;28(37):3274–85.

    Article  PubMed  CAS  Google Scholar 

  23. O’Donovan KJ, et al. The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells. PLoS One. 2010;5(4):e10045.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yusenko MV, Ruppert T, Kovacs G. Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis. Int J Biol Sci. 2010;6(3):213–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kuroda N, et al. Review of chromophobe renal cell carcinoma with focus on clinical and pathobiological aspects. Histol Histopathol. 2003;18(1):165–71.

    PubMed  CAS  Google Scholar 

  26. Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol. 2009;297(6):F1477–501.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Kreft ME, et al. Formation and maintenance of blood-urine barrier in urothelium. Protoplasma. 2010;246(1–4):3–14.

    Article  PubMed  Google Scholar 

  28. Ho PL, Kurtova A, Chan KS. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol. 2012;9(10):583–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hatina J, Schulz WA. Stem cells in the biology of normal urothelium and urothelial carcinoma. Neoplasma. 2012;59(6):728–36.

    Article  PubMed  CAS  Google Scholar 

  30. Cheng L, et al. Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol. 2011;42(4):455–81.

    Article  PubMed  CAS  Google Scholar 

  31. Castillo-Martin M, et al. Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol. 2011;28(4):401–8.

    Article  Google Scholar 

  32. DeGraff DJ, et al. When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol. 2011;31(6):802–11.

    Article  PubMed  Google Scholar 

  33. Di Pierro GB, et al. Bladder cancer: a simple model becomes complex. Curr Genomics. 2012;13(5):395–415.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Epstein JI, Amin MB, Reuter VE. In: Epstein JI, editor. Bladder biopsy interpretation, Biopsy interpretation series. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 55–99. Chapter 5: Invasive Urothelial Carcinoma.

    Google Scholar 

  35. Sjodahl G, et al. Toward a molecular pathologic classification of urothelial carcinoma. Am J Pathol. 2013;183(3):681–91.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng L, Lopez-Beltran A, Bostwick DG. Chapter 17. Bladder tumors with inverted growth. In: Lopez-Beltran A, Cheng L, Bostwick DG, editors. Bladder pathology. Hoboken: Wiley-Blackwell/Wiley; 2012. p. 383–98.

    Chapter  Google Scholar 

  37. Nimphius W, et al. CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder. Virchows Arch. 2007;450(2):179–85.

    Article  PubMed  CAS  Google Scholar 

  38. Wasco MJ, et al. Nested variant of urothelial carcinoma: a clinicopathologic and immunohistochemical study of 30 pure and mixed cases. Hum Pathol. 2010;41(2):163–71.

    Article  PubMed  Google Scholar 

  39. Cheng L, Lopez-Beltran A, Bostwick DG. Bladder pathology. Hoboken: Wiley-Blackwell; 2012. Chapter 12: Histological variants of urothelial carcinoma.

    Google Scholar 

  40. Bostwick DG, Cheng L. Chapter 8. Nonneoplastic diseases of the kidney. In: Urologic surgical pathology. London: Mosby/Elsevier; 2008. p. 381–442.

    Google Scholar 

  41. Miki J. Investigations of prostate epithelial stem cells and prostate cancer stem cells. Int J Urol. 2010;17(2):139–47.

    Article  PubMed  CAS  Google Scholar 

  42. Wang ZA, et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat Cell Biol. 2013;15(3):274–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Lai KP, et al. Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med. 2012;4(8):791–807.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Wu D, et al. Androgen receptor-driven chromatin looping in prostate cancer. Trends Endocrinol Metab. 2011;22(12):474–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Kong L, et al. Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis. 2012;33(4):751–9.

    Article  PubMed  CAS  Google Scholar 

  46. Koh CM, et al. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol. 2011;178(4):1824–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Han B, et al. Characterization of ETS gene aberrations in select histologic variants of prostate carcinoma. Mod Pathol. 2009;22(9):1176–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Thomson AA. Mesenchymal mechanisms in prostate organogenesis. Differentiation. 2008;76(6):587–98.

    Article  PubMed  CAS  Google Scholar 

  49. Yu S, et al. Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate. 2012;72(4):437–49.

    Article  PubMed  CAS  Google Scholar 

  50. Knudsen BS, Vasioukhin V. Mechanisms of prostate cancer initiation and progression. Adv Cancer Res. 2010;109:1–50.

    Article  PubMed  CAS  Google Scholar 

  51. Schauer IG, Rowley DR. The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation. 2011;82(4–5):200–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Giannico GA, et al. Aberrant expression of p63 in adenocarcinoma of the prostate: a radical prostatectomy study. Am J Surg Pathol. 2013;37(9):1401–6.

    Article  PubMed  Google Scholar 

  53. Epstein JI, Netto GJ. Chapter 7. Mimickers of adenocarcinoma of the prostate. In: Biopsy interpretation of the prostate. Philadelphia: Lippincott Williams & Wilkins/Wolters Kluwer Business; 2008. p. 105–56.

    Google Scholar 

  54. Zhao J, Epstein JI. High-grade foamy gland prostatic adenocarcinoma on biopsy or transurethral resection: a morphologic study of 55 cases. Am J Surg Pathol. 2009;33(4):583–90.

    Article  PubMed  Google Scholar 

  55. Hudson J, et al. Foamy gland adenocarcinoma of the prostate: incidence, Gleason grade, and early clinical outcome. Hum Pathol. 2011;43(7):974–9.

    Article  Google Scholar 

  56. Tran TT, Sengupta E, Yang XJ. Prostatic foamy gland carcinoma with aggressive behavior: clinicopathologic, immunohistochemical, and ultrastructural analysis. Am J Surg Pathol. 2001;25(5):618–23.

    Article  PubMed  CAS  Google Scholar 

  57. Humphrey PA. Histological variants of prostatic carcinoma and their significance. Histopathology. 2012;60(1):59–74.

    Article  PubMed  Google Scholar 

  58. Montironi R, et al. The spectrum of morphology in non-neoplastic prostate including cancer mimics. Histopathology. 2012;60(1):41–58.

    Article  PubMed  Google Scholar 

  59. Epstein JI, Netto GJ. In: Epstein JI, editor. Biopsy interpretation of the prostate, Biopsy interpretation series. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. Chapter 7: Mimickers of Adenocarcinoma of the Prostate.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, X. (2015). The Genitourinary System. In: Well-Differentiated Malignancies. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1692-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1692-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1691-7

  • Online ISBN: 978-1-4939-1692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics