Carboxysomes and Their Structural Organization in Prokaryotes

  • Sabine Heinhorst
  • Gordon C. Cannon
  • Jessup M. Shively
Chapter

Abstract

Carboxysomes are the archetypical examples of primitive proteinaceous organelles found in bacteria, collectively termed bacterial microcompartments (BMCs). Recent studies using current techniques for imaging and structural elucidation have resulted in a quantum leap of our mechanistic understanding of structure/function relationships in these bacterial inclusions. Bioinformatic analysis of the rapidly growing collection of sequenced bacterial genomes has revealed that BMCs of different types appear to be widely employed by microbes to organize their metabolism in much the same way that eukaryotes use sensu stricto organelles. This review focuses on some recently revealed properties of carboxysomes and points out pressing open questions. Some of these questions have remained unanswered since the discovery of carboxysomes; others have been raised by more recent discoveries.

Keywords

Permeability Codon Polypeptide Bicarbonate Disulfide 

Notes

Acknowledgments

The authors are grateful to Drs. Fei Cai, Cheryl Kerfeld, Cristina Iancu, and Grant Jensen for the images they provided and their help with various figures in this review. We truly appreciate the many stimulating discussions we have had throughout the years of our respective collaborations. SH and GCC acknowledge the generous funding of their carboxysome research from the National Science Foundation (current awards: MCB-0851070 and MCB-1244534).

References

  1. Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91:6909–6913PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baker SH, Lorbach SC, Rodriguez-Buey M, Williams DS, Aldrich HC, Shively JM (1999) The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in Thiobacillus neapolitanus. Arch Microbiol 172:233–239PubMedCrossRefGoogle Scholar
  3. Baker SH, Williams DS, Aldrich HC, Gambrell AC, Shively JM (2000) Identification and localization of the carboxysome peptide CsoS3 and its corresponding gene in Thiobacillus neapolitanus. Arch Microbiol 173:278–283PubMedCrossRefGoogle Scholar
  4. Berry S, Fischer JH, Kruip J, Hauser M, Wildner GF (2005) Monitoring cytosolic pH of carboxysome-deficient cells of Synechocystis sp. PCC 6803 using fluorescence analysis. Plant Biol (Stuttg) 7:342–347CrossRefGoogle Scholar
  5. Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1980) Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes, and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189CrossRefGoogle Scholar
  6. Bobik TA (2006) Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70:517–525PubMedCrossRefGoogle Scholar
  7. Bock E, Duval D, Peters KR (1974) Charakterisierung eines phagenähnlichen Partikels aus Zellen von Nitrobacter. I. Wirstpartikelbeziehung und Isolierung. Arch Microbiol 97:115–127PubMedCrossRefGoogle Scholar
  8. Cai F, Heinhorst S, Shively J, Cannon G (2008) Transcript analysis of the Halothiobacillus neapolitanus cso operon. Arch Microbiol 189:141–150PubMedCrossRefGoogle Scholar
  9. Cai F, Menon BB, Cannon GC, Curry KJ, Shively JM, Heinhorst S (2009) The pentameric vertex proteins are necessary for the icosahedral Carboxysome shell to function as a CO2 leakage barrier. PLoS ONE 4:e7521PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cai F, Sutter M, Cameron JC, Stanley DN, Kinney JN, Kerfeld CA (2013) The structure of CcmP, a tandem bacterial microcompartment domain protein from the beta-carboxysome, forms a subcompartment within a microcompartment. J Biol Chem 288:16055–16063PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cameron JC, Wilson SC, Bernstein SL, Kerfeld CA (2013) Biogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 155:1131–1140PubMedCrossRefGoogle Scholar
  12. Cannon GC, Shively JM (1983) Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Arch Microbiol 134:52–59CrossRefGoogle Scholar
  13. Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182CrossRefGoogle Scholar
  14. Cannon GC, Baker SH, Soyer F, Johnson DR, Bradburne CE, Mehlman JL, Davies PS, Jiang QL, Heinhorst S, Shively JM (2003) Organization of carboxysome genes in the thiobacilli. Curr Microbiol 46:115–119PubMedCrossRefGoogle Scholar
  15. Cannon GC, Heinhorst S, Kerfeld CA (2010) carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta 1804:382–392PubMedCrossRefGoogle Scholar
  16. Chen AH, Robinson-Mosher A, Savage DF, Silver PA, Polka JK (2013) The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo. PLoS ONE 8:e76127PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. Bioessays 30:1084–1095PubMedCentralPubMedCrossRefGoogle Scholar
  18. Cot SS-W, So AK-C, Espie GS (2008) A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J Bacteriol 190:936–945PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384PubMedCrossRefGoogle Scholar
  20. Fan C, Cheng S, Liu Y, Escobar CM, Crowley CS, Jefferson RE, Yeates TO, Bobik TA. (2012) Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci USA 107:7509–7514CrossRefGoogle Scholar
  21. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493PubMedCentralPubMedGoogle Scholar
  22. Gitai Z (2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120:577–586PubMedCrossRefGoogle Scholar
  23. de Groot BL, Grubmuller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183PubMedCrossRefGoogle Scholar
  24. Havemann GD, Sampson EM, Bobik TA (2002) PduA is a shell protein of polyhedral organelles involved in coenzyme B(12)-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol 184:1253–1261PubMedCentralPubMedCrossRefGoogle Scholar
  25. Heinhorst S, Cannon GC, Shively JM (2006) Carboxysomes and carboxysome-like inclusions. In: Shively JM (ed) Complex intracellular structures in prokaryotes, vol 2. Springer, Berlin, pp 141–164Google Scholar
  26. Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC (2006) Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J Bacteriol 188:8087–8094PubMedCentralPubMedCrossRefGoogle Scholar
  27. Holthuijzen YA, Breemen JFL, Konings WN, Bruggen EFJ (1986) Electron microscopic studies of carboxysomes of Thiobacillus neapolitanus. Arch Microbiol 144:258–262CrossRefGoogle Scholar
  28. Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ (2007) The structure of isolated synechococcus strain WH8102 Carboxysomes as revealed by electron cryotomography. J Mol Biol 372:764–773PubMedCentralPubMedCrossRefGoogle Scholar
  29. Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ (2010) Organization, structure, and assembly of [alpha]-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 396:105–117PubMedCentralPubMedCrossRefGoogle Scholar
  30. Jain IH, Vijayan V, O’Shea EK (2012) Spatial ordering of chromosomes enhances the fidelity of chromosome partitioning in cyanobacteria. Proc Natl Acad Sci USA 109:13638–13643PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jensen TE (1984) Cyanobacterial cell inclusions of irregular occurrence: systematic and evolutionary implications. Cytobios 39:35–62Google Scholar
  32. Kaneko Y, Danev R, Nagayama K, Nakamoto H (2006) Intact carboxysomes in a cyanobacterial cell visualized by hilbert differential contrast transmission electron microscopy. J Bacteriol 188:805–808PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570PubMedCrossRefGoogle Scholar
  34. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938PubMedCrossRefGoogle Scholar
  35. Kerfeld CA, Heinhorst S, Cannon GC (2010) Bacterial microcompartments. Annu Rev Microbiol 64:391–408PubMedCrossRefGoogle Scholar
  36. Kinney J, Axen S, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosynth Res 109:21–32PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kinney JN, Salmeen A, Cai F, Kerfeld CA (2012) Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 287:17729–17736PubMedCentralPubMedCrossRefGoogle Scholar
  38. Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA (2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392:319–333PubMedCrossRefGoogle Scholar
  39. Liberton M, Austin JR, Berg RH, Pakrasi HB (2011) Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography Plant Physiol 155:1656–1666PubMedCentralPubMedCrossRefGoogle Scholar
  40. Long BM, Price GD, Badger MR (2005) Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC7942. Can J Bot 83:746–757CrossRefGoogle Scholar
  41. Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple RubisCO complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335PubMedCrossRefGoogle Scholar
  42. Long BM, Tucker L, Badger MR, Price GD (2010) Functional cyanobacterial β-carboxysomes have an absolute requirement for both long and short forms of the CcmM protein. Plant Physiol 153:285–293PubMedCentralPubMedCrossRefGoogle Scholar
  43. Long BM, Rae BD, Badger MR, Price GD (2011) Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content. Photosynth Res 109:33–45PubMedCrossRefGoogle Scholar
  44. Ludwig M, Sültemeyer D, Price GD (2000) Isolation of ccmKLMN genes from the marine cyanobacterium Synechococcus sp. PCC7002 and evidence that CcmM is essential for carboxysome assembly. J Phycol 36:1109–1118CrossRefGoogle Scholar
  45. Mahoney RP, Edwards MR (1966) Fine structure of Thiobacillus thiooxidans. J Bacteriol 92: 487–495PubMedCentralPubMedGoogle Scholar
  46. McKay RML, Gibbs SP, Espie GS (1993) Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of RubisCO and the mode of carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 159:21–29CrossRefGoogle Scholar
  47. Menon BB, Dou Z, Heinhorst S, Shively JM, Cannon GC (2008) Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species. PLoS ONE 3:e3570PubMedCentralPubMedCrossRefGoogle Scholar
  48. Menon BB, Dou Z, Milam J, Shively JM, Heinhorst S, Cannon GC (2009) Phenotypic analysis of a Halothiobacillus neapolitanus mutant harboring beta-cyanobacterial form IB RubisCO. In: Amercian society for microbiology 109th general meeting Philadelphia, PA. K–066Google Scholar
  49. Menon BB, Heinhorst S, Shively JM, Cannon GC (2010) The carboxysome shell is permeable to protons. J Bacteriol 192:5881–5886PubMedCentralPubMedCrossRefGoogle Scholar
  50. Nierzwicki-Bauer S, Balkwill D, Stevens S Jr (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722PubMedCrossRefGoogle Scholar
  51. Orus MI, Rodriguez ML, Martinez F, Marco E (1995) Biogenesis and ultrastructure of carboxysomes from wild type and mutants of Synechococcus sp. strain PCC 7942. Plant Physiol 107:1159–1166PubMedCentralPubMedGoogle Scholar
  52. Orus MI, Rodriguez-Buey ML, Marco E, Fernandez-Valiente E (2001) Changes in carboxysome structure and grouping and in photosynthetic affinity for inorganic carbon in Anabaena strain PCC 7119 (Cyanophyta) in response to modification of CO2 and Na+ supply. Plant Cell Physiol 42:46–53PubMedCrossRefGoogle Scholar
  53. Parsons JB, Dinesh SD, Deery E et al (2008) Biochemical and structural insights into bacterial organelle form and biogenesis. J Biol Chem 283:14366–14375PubMedCrossRefGoogle Scholar
  54. Peña KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460PubMedCentralPubMedCrossRefGoogle Scholar
  55. Penrod JT, Roth JR (2006) Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J Bacteriol 188:2865–2874PubMedCentralPubMedCrossRefGoogle Scholar
  56. Peters K-R (1974) Characterisierung eines phagenaehnlichen Partikels aus Zellen von Nitrobacter. Arch Microbiol 97:129–140Google Scholar
  57. Price GD, Badger MR (1989) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC 7942: two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol 91:514–525PubMedCentralPubMedCrossRefGoogle Scholar
  58. Price GD, Badger MR (1991) Evidence for the role of carboxysomes in the cyanobacterial CO2-concentrating mechanism. Can J Bot 69:963–973CrossRefGoogle Scholar
  59. Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:784–793PubMedCentralPubMedCrossRefGoogle Scholar
  60. Price GD, Howitt S, Harrison K, Badger MR (1993) Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J Bacteriol 175:2871–2879PubMedCentralPubMedGoogle Scholar
  61. Price GD, Sültemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins and recent advances. Can J Bot 76:973–1002Google Scholar
  62. Pronk JT, Meulenberg R, van den Berg DJ, Batenburg-van der Vegte W, Bos P, Kuenen JG (1990) Mixotrophic and autotrophic growth of Thiobacillus acidophilus on glucose and thiosulfate. Appl Environ Microbiol 56:3395–3401PubMedCentralPubMedGoogle Scholar
  63. Purohit K, McFadden BA, Shaykh MM (1976) D-Ribulose-1,5-bisphosphate carboxylase and polyhedral inclusion bodies in Thiobacillus intermedius. J Bacteriol 127:516–522PubMedCentralPubMedGoogle Scholar
  64. Rae BD, Long BM, Badger MR, Price GD (2012) Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3-K4, CcmO, and CcmL. PLoS ONE 7:e43871PubMedCentralPubMedCrossRefGoogle Scholar
  65. Rae BD, Long BM, Badger MR, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77: 357–379PubMedCentralPubMedCrossRefGoogle Scholar
  66. Reinhold L, Zviman M, Kaplan A (1989) A quantitative model for carbon fluxes and photosynthesis in cyanobacteria. Plant Physiol Biochem 27:945–954Google Scholar
  67. Roberts EW, Cai F, Kerfeld CA, Cannon GC, Heinhorst S (2012) Isolation and characterization of the prochlorococcus carboxysome reveal the presence of the novel shell protein CsoS1D. J Bacteriol 194:787–795PubMedCentralPubMedCrossRefGoogle Scholar
  68. Samborska B, Kimber MS (2012) A dodecameric CcmK2 structure suggests beta-carboxysomal shell facets have a double-layered organization. Structure 20:1353–1362PubMedCrossRefGoogle Scholar
  69. Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261PubMedCrossRefGoogle Scholar
  70. Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7555PubMedCrossRefGoogle Scholar
  71. Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535PubMedCentralPubMedCrossRefGoogle Scholar
  72. Shepherd CM, Borelli IA, Lander G, Natarajan P, Siddavanahalli V, Bajaj C, Johnson JE, Brooks CL 3rd, Reddy VS (2006) VIPERdb: a relational database for structural virology. Nucl Acids Res 34:D386–389PubMedCentralPubMedCrossRefGoogle Scholar
  73. Shively JM, English RS (1991) The carboxysome, a prokaryotic organelle: a mini review. Can J Bot 69:957–962CrossRefGoogle Scholar
  74. Shively JM, Decker GL, Greenawalt JW (1970) Comparative ultrastructure of the thiobacilli. J Bacteriol 101: 618–627PubMedCentralPubMedGoogle Scholar
  75. Shively JM, Ball F, Brown DH, Saunders RE (1973a) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586CrossRefGoogle Scholar
  76. Shively JM, Ball FL, Kline BW (1973b) Electron microscopy of the carboxysomes (polyhedral bodies) of Thiobacillus neapolitanus. J Bacteriol 116:1405–1411Google Scholar
  77. So AK-C, Espie GS (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol Biol 37:205–215PubMedCrossRefGoogle Scholar
  78. So AK-C, John-McKay M, Espie GS (2002) Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214:456–467PubMedCrossRefGoogle Scholar
  79. So AK-C, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630PubMedCentralPubMedCrossRefGoogle Scholar
  80. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086PubMedCrossRefGoogle Scholar
  81. Tanaka S, Sawaya MR, Phillips M, Yeates TO (2009) Insights from multiple structures of the shell proteins from the beta-carboxysome. Protein Sci 18:108–120PubMedCentralPubMedGoogle Scholar
  82. Tang M, Jensen TE, Corpe WA (1995) The occurrence of polyphosphate bodies in polyhedral bodies (carboxysomes) in Synechococcus leopoliensis (Cyanophyceae). Microbios 81:59–66Google Scholar
  83. Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493PubMedCentralPubMedCrossRefGoogle Scholar
  84. Tocheva EI, Li Z, Jensen GJ (2010) Electron cryotomography. Cold Spring Harb Perspect Biol 2:a003442PubMedCentralPubMedCrossRefGoogle Scholar
  85. Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 5:e144PubMedCentralPubMedCrossRefGoogle Scholar
  86. Tsai Y, Sawaya MR, Yeates TO (2009) Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr D Biol Crystallogr 65:980–988PubMedCrossRefGoogle Scholar
  87. van der Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270CrossRefGoogle Scholar
  88. Westphal K, Bock E (1974) Charakterisierung eines phagenähnlichen Partikels aus Zellen von Nitrobacter III. Nachweis von DNS. Arch Microbiol 101:121–130PubMedCrossRefGoogle Scholar
  89. Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691PubMedCrossRefGoogle Scholar
  90. Yeates TO, Thompson MC, Bobik TA (2011) The protein shells of bacterial microcompartment organelles. Curr Opin Struct Biol 21:223–231PubMedCentralPubMedCrossRefGoogle Scholar
  91. Yeates TO, Jorda J, Bobik TA (2013) The shells of BMC-type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol 23:290–299PubMedCrossRefGoogle Scholar
  92. Zhang S, Laborde SM, Frankel LK, Bricker TM (2004) Four novel genes required for optimal photoautotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803 identified by in vitro transposon mutagenesis. J Bacteriol 186:875–879PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sabine Heinhorst
    • 1
  • Gordon C. Cannon
    • 1
  • Jessup M. Shively
    • 2
  1. 1.Department of Chemistry and BiochemistryThe University of Southern MississippiHattiesburgUSA
  2. 2.Department of Genetics and BiochemistryClemson UniversityClemsonUSA

Personalised recommendations