Skip to main content

Epstein–Barr Virus Infection in Humanized Mice

  • Chapter
  • First Online:
Book cover Humanized Mice for HIV Research

Abstract

Epstein–Barr virus (EBV) is a lymphotropic herpes virus associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, and malignant diseases such as Burkitt lymphoma and Hodgkin lymphoma. EBV is also implicated in various autoimmune diseases. Humans are the only natural host of EBV and small animal models of EBV infection have not been available, although a few new-world monkeys can be infected with the virus experimentally. Humanized mice harboring functioning human lymphocytes can be readily infected with EBV and have reproduced cardinal features associated with human EBV infection, including lymphoproliferative disease, hemophagocytic lymphohistiocytosis, erosive arthritis resembling rheumatoid arthritis, and asymptomatic persistent infection. EBV-specific T-cell responses are induced in humanized mice that protect them from uncontrolled proliferation of EBV-infected cells. Chronic active EBV infection, an EBV-associated T/NK lymphoproliferative disease, that could not be reproduced in humanized mice, has been recapitulated by xenogeneic transplantation of patient’s peripheral blood mononuclear cells to NOG mice. This chapter summarizes features of human EBV infection that were reproduced in humanized mouse models and mouse xenograft models, and shows how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EBV:

Epstein–Barr virus

IM:

Infectious mononucleosis

LPD:

Lymphoproliferative disease

RA:

Rheumatoid arthritis

LCL:

Lymphoblastoid cell line

CTL:

Cytotoxic T lymphocyte

EBNA:

EBV nuclear antigen

LMP:

Latent membrane protein

EBER:

EBV-encoded small RNA

BART:

BamHI-A rightward transcript

CAEBV:

Chronic active EBV infection

PBMC:

Peripheral blood mononuclear cells

HSC:

Hematopoietic stem cell

HLH:

Hemophagocytic lymphohistiocytosis

XLP:

X-linked lymphoproliferative disease

HA:

Hemagglutinin

NOG:

NOD/Shi-scid Il2rg null

BRG:

Balb/c Rag2 -/- Il2rg -/-

NSG:

NOD/LtSz-scid Il2rg -/-

References

  1. Rickinson AB, Kieff ED. Epstein–Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 5. edn. Philadelphia: Lippincott Williams and Wilkins; 2007. pp. 2655–700.

    Google Scholar 

  2. Niller HH, Wolf H, Ay E, Minarovits J. Epigenetic dysregulation of Epstein–Barr virus latency and development of autoimmune disease. Adv Exp Med Biol. 2011;711:82–102.

    Article  CAS  PubMed  Google Scholar 

  3. Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol. 2007;25:587–617.

    Article  CAS  PubMed  Google Scholar 

  4. Kieff ED, Rickinson AB. Epstein–Barr virus and its replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams and Wilkins; 2007. pp. 2603–54.

    Google Scholar 

  5. Shope T, Dechairo D, Miller G. Malignant lymphoma in cotton top marmosets after inoculation with Epstein–Barr virus. Proc Natl Acad Sci U S A. 1973;70(9):2487–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Johannessen I, Crawford DH. In vivo models for Epstein–Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev Med Virol. 1999;9(4):263–77.

    Article  CAS  PubMed  Google Scholar 

  7. Epstein MA. zur Hausen H, Ball G, Rabin H. Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). III. Serological and biochemical findings in an animal with reticuloproliferative disease. Int J Cancer. 1975;15(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  8. Takashima K, Ohashi M, Kitamura Y, Ando K, Nagashima K, Sugihara H, et al. A new animal model for primary and persistent Epstein–Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J Med Virol. 2008;80(3):455–66.

    Article  CAS  PubMed  Google Scholar 

  9. Epstein MA, Morgan AJ, Finerty S, Randle BJ, Kirkwood JK. Protection of cottontop tamarins against Epstein–Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature. 1985;318(6043):287–9.

    Article  CAS  PubMed  Google Scholar 

  10. Moghaddam A, Rosenzweig M, Lee-Parritz D, Annis B, Johnson RP, Wang F. An animal model for acute and persistent Epstein–Barr virus infection. Science. 1997;276(5321):2030–3.

    Article  CAS  PubMed  Google Scholar 

  11. Wang F. A new animal model for Epstein–Barr virus pathogenesis. Curr Top Microbiol Immunol. 2001;258:201–19.

    CAS  PubMed  Google Scholar 

  12. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cannon MJ, Pisa P, Fox RI, Cooper NR. Epstein-Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest. 1990;85(4):1333–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rowe M, Young LS, Crocker J, Stokes H, Henderson S, Rickinson AB. Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med. 1991;173(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  15. Mosier DE, Gulizia RJ, Baird SM, Spector S, Spector D, Kipps TJ, et al. Studies of HIV infection and the development of Epstein-Barr virus-related B cell lymphomas following transfer of human lymphocytes to mice with severe combined immunodeficiency. Curr Top Microbiol Immunol. 1989;152:195–9.

    CAS  PubMed  Google Scholar 

  16. Veronese ML, Veronesi A, D’Andrea E, Del Mistro A, Indraccolo S, Mazza MR, et al. Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice. I. T lymphocyte requirement for B cell tumor generation. J Exp Med. 1992;176(6):1763–7.

    Article  CAS  PubMed  Google Scholar 

  17. Johannessen I, Asghar M, Crawford DH. Essential role for T cells in human B-cell lymphoproliferative disease development in severe combined immunodeficient mice. Br J Haematol. 2000;109(3):600–10.

    Article  CAS  PubMed  Google Scholar 

  18. Baiocchi RA, Ross ME, Tan JC, Chou CC, Sullivan L, Haldar S, et al. Lymphomagenesis in the SCID-hu mouse involves abundant production of human interleukin-10. Blood. 1995;85(4):1063–74.

    CAS  PubMed  Google Scholar 

  19. Piovan E, Tosello V, Indraccolo S, Cabrelle A, Baesso I, Trentin L, et al. Chemokine receptor expression in EBV-associated lymphoproliferation in hu/SCID mice: implications for CXCL12/CXCR4 axis in lymphoma generation. Blood. 2005;105(3):931–9.

    Article  CAS  PubMed  Google Scholar 

  20. Dierksheide JE, Baiocchi RA, Ferketich AK, Roychowdhury S, Pelletier RP, Eisenbeis CF, et al. IFN-gamma gene polymorphisms associate with development of EBV + lymphoproliferative disease in hu PBL-SCID mice. Blood. 2005;105(4):1558–65.

    Article  CAS  PubMed  Google Scholar 

  21. Lim WH, Kireta S, Russ GR, Coates PT. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood. 2007;109(3):1043–50.

    Article  CAS  PubMed  Google Scholar 

  22. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  CAS  PubMed  Google Scholar 

  23. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82.

    Article  CAS  PubMed  Google Scholar 

  25. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article  CAS  PubMed  Google Scholar 

  26. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, et al. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis. 2008;198(5):673–82.

    Article  CAS  PubMed  Google Scholar 

  27. Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, et al. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol. 2011;85(1):165–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, et al. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol. 2012;86(15):7976–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med. 2009;206(6):1423–34.

    Article  PubMed Central  PubMed  Google Scholar 

  30. White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest. 2012;122(4):1487–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Islas-Ohlmayer M, Padgett-Thomas A, Domiati-Saad R, Melkus MW, Cravens PD, Martin Mdel P, et al. Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein-Barr virus. J Virol. 2004;78(24):13891–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. May KF Jr, Roychowdhury S, Bhatt D, Kocak E, Bai XF, Liu JQ, et al. Anti-human CTLA-4 monoclonal antibody promotes T-cell expansion and immunity in a hu-PBL-SCID model: a new method for preclinical screening of costimulatory monoclonal antibodies. Blood. 2005;105(3):1114–20.

    Article  CAS  PubMed  Google Scholar 

  33. Eisenbeis CF, Grainger A, Fischer B, Baiocchi RA, Carrodeguas L, Roychowdhury S, et al. Combination immunotherapy of B-cell non-Hodgkin's lymphoma with rituximab and interleukin-2: a preclinical and phase I study. Clin Cancer Res. 2004;10(18 Pt 1):6101–10.

    Article  CAS  PubMed  Google Scholar 

  34. Baiocchi RA, Ward JS, Carrodeguas L, Eisenbeis CF, Peng R, Roychowdhury S, et al. GM-CSF and IL-2 induce specific cellular immunity and provide protection against Epstein-Barr virus lymphoproliferative disorder. J Clin Invest. 2001;108(6):887–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Baiocchi RA, Caligiuri MA. Low-dose interleukin 2 prevents the development of Epstein-Barr virus (EBV)-associated lymphoproliferative disease in scid/scid mice reconstituted i.p. with EBV-seropositive human peripheral blood lymphocytes. Proc Natl Acad Sci U S A. 1994;91(12):5577–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bohlen H, Manzke O, Titzer S, Lorenzen J, Kube D, Engert A, et al. Prevention of Epstein-Barr virus-induced human B-cell lymphoma in severe combined immunodeficient mice treated with CD3xCD19 bispecific antibodies, CD28 monospecific antibodies, and autologous T cells. Cancer Res. 1997;57(9):1704–9.

    CAS  PubMed  Google Scholar 

  37. Franken M, Estabrooks A, Cavacini L, Sherburne B, Wang F, Scadden DT. Epstein-Barr virus-driven gene therapy for EBV-related lymphomas. Nat Med. 1996;2(12):1379–82.

    Article  CAS  PubMed  Google Scholar 

  38. Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008;112(4):1231–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.

    Article  PubMed  Google Scholar 

  40. Kikuta H, Sakiyama Y, Matsumoto S, Oh-Ishi T, Nakano T, Nagashima T, et al. Fatal Epstein-Barr virus-associated hemophagocytic syndrome. Blood. 1993;82(11):3259–64.

    CAS  PubMed  Google Scholar 

  41. Kawaguchi H, Miyashita T, Herbst H, Niedobitek G, Asada M, Tsuchida M, et al. Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J Clin Invest. 1993;92(3):1444–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lay JD, Tsao CJ, Chen JY, Kadin ME, Su IJ. Upregulation of tumor necrosis factor-alpha gene by Epstein-Barr virus and activation of macrophages in Epstein-Barr virus-infected T cells in the pathogenesis of hemophagocytic syndrome. J Clin Invest. 1997;100(8):1969–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, et al. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood. 2011;117(21):5663–73.

    Article  CAS  PubMed  Google Scholar 

  44. Yang X, Wada T, Imadome K, Nishida N, Mukai T, Fujiwara M, et al. Characterization of Epstein-Barr virus (EBV)-infected cells in EBV-associated hemophagocytic lymphohistiocytosis in two patients with X-linked lymphoproliferative syndrome type 1 and type 2. Herpesviridae. 2012;3(1):1.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Imadome K, Yajima M, Arai A, Nakazawa A, Kawano F, Ichikawa S, et al. Novel mouse xenograft models reveal a critical role of CD4 + T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog. 2011;7(10):e1002326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.

    Article  CAS  PubMed  Google Scholar 

  47. Toussirot E, Roudier J. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update. Joint Bone Spine. 2007;74(5):418–26.

    Article  CAS  PubMed  Google Scholar 

  48. Takei M, Mitamura K, Fujiwara S, Horie T, Ryu J, Osaka S, et al. Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int Immunol. 1997;9(5):739–43.

    Article  CAS  PubMed  Google Scholar 

  49. Takeda T, Mizugaki Y, Matsubara L, Imai S, Koike T, Takada K. Lytic Epstein-Barr virus infection in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 2000;43(6):1218–25.

    Article  CAS  PubMed  Google Scholar 

  50. Kuwana Y, Takei M, Yajima M, Imadome K, Inomata H, Shiozaki M, et al. Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS ONE. 2011;6(10):e26630.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, et al. T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis. 2009;200(10):1611–5.

    Article  CAS  PubMed  Google Scholar 

  52. Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, et al. EBV-induced human CD8 + NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res. 2009;69(20):7935–44.

    Article  PubMed  Google Scholar 

  53. Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, et al. CD8 + cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol. 2010;184(12):7082–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Marodon G, Desjardins D, Mercey L, Baillou C, Parent P, Manuel M, et al. High diversity of the immune repertoire in humanized NOD.SCID.gamma c-/- mice. Eur J Immunol. 2009;39(8):2136–45.

    Article  CAS  PubMed  Google Scholar 

  55. Kwant-Mitchell A, Ashkar AA, Rosenthal KL. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J Virol. 2009;83(20):10664–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yu CI, Gallegos M, Marches F, Zurawski G, Ramilo O, Garcia-Sastre A, et al. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood. 2008;112(9):3671–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843–58.

    Article  CAS  PubMed  Google Scholar 

  58. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A. 2010;107(29):13022–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A. 2006;103(43):15951–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood. 2007;109(1):212–8.

    Article  CAS  PubMed  Google Scholar 

  61. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med. 2007;204(4):705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Cocco M, Bellan C, Tussiwand R, Corti D, Traggiai E, Lazzi S, et al. CD34+ cord blood cell-transplanted Rag2-/- gamma(c)-/- mice as a model for Epstein-Barr virus infection. Am J Pathol. 2008;173(5):1369–78.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Lee MA, Yates JL. BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. J Virol. 1992;66(4):1899–906.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Shimizu N, Yoshiyama H, Takada K. Clonal propagation of Epstein-Barr virus (EBV) recombinants in EBV-negative Akata cells. J Virol. 1996;70(10):7260–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Swaminathan S, Hesselton R, Sullivan J, Kieff E. Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J Virol. 1993;67(12):7406–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Okano M. Overview and problematic standpoints of severe chronic active Epstein-Barr virus infection syndrome. Crit Rev Oncol Hematol. 2002;44(3):273–82.

    Article  PubMed  Google Scholar 

  68. Straus SE. Acute progressive Epstein-Barr virus infections. Annu Rev Med. 1992;43:437–49.

    Article  CAS  PubMed  Google Scholar 

  69. Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol. 2006;16(4):251–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Health, Labour and Welfare of Japan (H24-Nanchi-046 and H22-AIDS-I-002), the Grant of National Center for Child Health and Development (25-9), a grant for the Research on Publicly Essential Drugs and Medical Devices from The Japan Health Sciences Foundation (KHD1221), and the Grant-in-Aid for Scientific Research (C) (H22-22590430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyoshi Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujiwara, S., Matsuda, G., Imadome, KI. (2014). Epstein–Barr Virus Infection in Humanized Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_39

Download citation

Publish with us

Policies and ethics