Advertisement

Cell-Based Approaches for Treating HIV Infection

Chapter

Abstract

Humanized mice have been used with a great deal of success to study many aspects of the human immune system, including immune system development, immune responses, and also viral infections of the human immune system itself. Regarding HIV infection, these models have proven robust for studying pathogenesis, antiviral responses, and novel therapeutic approaches. Herein we focus on how various humanized mouse models have been exploited to explore cellular-based therapeutics targeting HIV disease, including various stem cell gene therapy approaches. Continued development and utilization of humanized mouse models should provide further important contributions to speed the progress of cell-based therapeutics for HIV disease towards clinical utility.

Keywords

Hematopoietic stem cell Gene therapy HIV infection Cell-based therapy Humanized mouse Engineered immunity Cytotoxic T cell Neutralizing antibody HIV immunity In vivo model 

References

  1. 1.
    Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9.CrossRefPubMedGoogle Scholar
  3. 3.
    McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.CrossRefPubMedGoogle Scholar
  6. 6.
    Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Galic Z, Kitchen SG, Kacena A, Subramanian A, Burke B, Cortado R, et al. T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103(31):11742–7.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Mosier DE, Gulizia RJ, MacIsaac PD, Torbett BE, Levy JA. Rapid loss of CD4+ T cells in human-PBL-SCID mice by noncytopathic HIV isolates. Science. 1993;260(5108):689–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Bonyhadi ML, Rabin L, Salimi S, Brown DA, Kosek J, McCune JM, et al. HIV induces thymus depletion in vivo. Nature. 1993;363(6431):728–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Aldrovandi GM, Feuer G, Gao L, Jamieson B, Kristeva M, Chen IS, et al. The SCID-hu mouse as a model for HIV-1 infection. Nature 1993;363(6431):732–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Brooks DG, Kitchen SG, Kitchen CM, Scripture-Adams DD, Zack JA. Generation of HIV latency during thymopoiesis. Nat Med. 2001;7(4):459–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Akkina RK, Rosenblatt JD, Campbell AG, Chen IS, Zack JA. Modeling human lymphoid precursor cell gene therapy in the SCID-hu mouse. Blood. 1994;84(5):1393–8.PubMedGoogle Scholar
  14. 14.
    Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N, et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 2010;115(8):1534–44.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Kitchen SG, Bennett M, Galic Z, Kim J, Xu Q, Young A, et al. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice. PLoS ONE. 2009;4(12):e8208.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A. 2010;107(29):13022–7.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood. 2007;109(1):212–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F, et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS ONE. 2010;5(1):e8829.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol. 2011;85(15):7582–93.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Neff CP, Kurisu T, Ndolo T, Fox K, Akkina R. A topical microbicide gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice. PLoS One. 2011;6(6):e20209.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med. 2011;3(66):66ra66.CrossRefGoogle Scholar
  22. 22.
    Neff CP, Ndolo T, Tandon A, Habu Y, Akkina R. Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model. PLoS ONE. 2010;5(12):e15257.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Stoddart CA, Maidji E, Galkina SA, Kosikova G, Rivera JM, Moreno ME, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2R[γ]-/- (NSG) BLT mice. Virology. 2011;417(1):154–60.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Singh M, Singh P, Gaudray G, Musumeci L, Thielen C, Vaira D, et al. An improved protocol for efficient engraftment in NOD/LTSZ-SCIDIL-2Rgammanull mice allows HIV replication and development of anti-HIV immune responses. PLoS ONE. 2012;7(6):e38491.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Kitchen SG, Levin BR, Bristol G, Rezek V, Kim S, Aguilera-Sandoval C, et al. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog. 2012;8(4):e1002649.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008;324:149–65.PubMedGoogle Scholar
  28. 28.
    Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.CrossRefPubMedGoogle Scholar
  29. 29.
    An DS, Poon B, Ho Tsong Fang R, Weijer K, Blom B, Spits H, et al. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol. 2007;14(4):391–6.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117(10):2791–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Berges BK, Rowan MR. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology. 2011;8:65.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Bonyhadi ML, Moss K, Voytovich A, Auten J, Kalfoglou C, Plavec I, et al. RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol. 1997;71(6):4707–16.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Su L, Lee R, Bonyhadi M, Matsuzaki H, Forestell S, Escaich S, et al. Hematopoietic stem cell-based gene therapy for acquired immunodeficiency syndrome: efficient transduction and expression of RevM10 in myeloid cells in vivo and in vitro. Blood. 1997;89(7):2283–90.PubMedGoogle Scholar
  34. 34.
    Amado RG, Symonds G, Jamieson BD, Zhao G, Rosenblatt JD, Zack JA. Effects of megakaryocyte growth and development factor on survival and retroviral transduction of T lymphoid progenitor cells. Hum Gene Ther. 1998;9(2):173–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Amado RG, Mitsuyasu RT, Symonds G, Rosenblatt JD, Zack J, Sun LQ, et al. A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum Gene Ther. 1999;10(13):2255–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Mitsuyasu R, Merigan T, Carr A, Zack J, Winters M, Workman C, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15:285–92.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    ter Brake O, Legrand N, von Eije KJ, Centlivre M, Spits H, Weijer K, et al. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)gammac(-/-)) mouse model. Gene Ther. 2009;16(1):148–53.CrossRefPubMedGoogle Scholar
  38. 38.
    Mukherjee R, Plesa G, Sherrill-Mix S, Richardson MW, Riley JL, Bushman FD. HIV sequence variation associated with env antisense adoptive T-cell therapy in the hNSG mouse model. Mol Ther J Am Soc Gene Ther. 2010;18(4):803–11.CrossRefGoogle Scholar
  39. 39.
    Neagu MR, Ziegler P, Pertel T, Strambio-De-Castillia C, Grutter C, Martinetti G, et al. Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J Clin Investig. 2009;119(10):3035–47.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Anderson J, Akkina R. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum Gene Ther. 2008;19(3):217–28.CrossRefPubMedGoogle Scholar
  41. 41.
    Vets S, Kimpel J, Volk A, De Rijck J, Schrijvers R, Verbinnen B, et al. Lens epithelium-de-rived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model. Mol Ther J Am Soc Gene Ther. 2012;20(5):908–17.CrossRefGoogle Scholar
  42. 42.
    Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R. Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Ther J Am Soc Gene Ther. 2000;1(3):244–54.CrossRefGoogle Scholar
  43. 43.
    Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011;7(4):e1002020.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Kimpel J, Braun SE, Qiu G, Wong FE, Conolle M, Schmitz JE, et al. Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection. PLoS ONE. 2010;5(8):e12357.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Berges BK, Rowan MR. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology. 2011;8(1):65.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Kitchen SG, Shimizu S, An DS. Stem cell-based anti-HIV gene therapy. Virology. 2011;411(2):260–72.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Ringpis GE, Shimizu S, Arokium H, Camba-Colon J, Carroll MV, Cortado R, et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PLoS ONE. 2012;7(12):e53492.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes—CCR5 ribozyme, tat-rev siRNA, and TAR decoy—in SCID-hu mouse-derived T cells. Mol Ther J Am Soc Gene Ther. 2007;15(6):1182–8.Google Scholar
  50. 50.
    Walker JE, Chen RX, McGee J, Nacey C, Pollard RB, Abedi M, et al. Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. J Virol. 2012;86(10):5719–29.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G, et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol. 2010;84(13):6645–53.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481(7379):81–4.CrossRefGoogle Scholar
  53. 53.
    Joseph A, Zheng JH, Follenzi A, Dilorenzo T, Sango K, Hyman J, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 2008;82(6):3078–89.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Hematology-Oncology, The David Geffen School of Medicine at UCLAThe UCLA AIDS InstituteLos AngelesUSA

Personalised recommendations