Humanized Mice as Models for Human Disease



The optimization and standardization of humanized mouse models has been ongoing for many years now, with development of specific models that have unique applications for discovery research and preclinical analysis of antiviral drugs. In this review, we strive to place this continuum of work into perspective, both to provide an historical footing to its progress and to urge attention to obstacles that continue to confront the full application of these models to the analysis of human disease.


Humanized mouse Immunodeficient mouse Human tissue Preclinical drug development HIV 



We would like to thank Drs. Sandra Bridges, Cheryl Stoddart, and Jerry Zack for their careful reading of this manuscript as well as for their many contributions to humanized mouse technology.


  1. 1.
    Mold JE, Venkatasubrahmanyam S, Burt TD, Michaelsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science. 2010;330(6011):1695–9.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Mold JE, McCune JM. Immunological tolerance during fetal development: from mouse to man. Adv Immunol. 2012;115:73–111.CrossRefPubMedGoogle Scholar
  3. 3.
    Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Denton PW, Nochi T, Lim A, Krisko JF, Martinez-Torres F, Choudhary SK, Wahl A, Olesen R, Zou W, Di Santo JP, Margolis DM et al. Il-2 receptor gamma-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol. 2012;5(5):555–66.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Long BR, Stoddart CA. Alpha interferon and HIV infection cause activation of human T cells in NSG-BLT mice. J Virol. 2012 86(6):3327–36.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Bacchetti P, Deeks SG, McCune JM. Breaking free of sample size dogma to perform innovative translational research. Sci Transl Med. 2011;3(87):87ps24.CrossRefGoogle Scholar
  7. 7.
    McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The scid-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990;172(4):1055–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Shih CC, Kaneshima H, Rabin L, Namikawa R, Sager P, McGowan J, McCune JM. Postexposure prophylaxis with zidovudine suppresses human immunodeficiency virus type 1 infection in SCID-hu mice in a time-dependent manner. J Infect Dis. 1991;163(3):625–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Kyoizumi S, Baum CM, Kaneshima H, McCune JM, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood. 1992;79(7):1704–11.PubMedGoogle Scholar
  11. 11.
    Fraser CC, Kaneshima H, Hansteen G, Kilpatrick M, Hoffman R, Chen BP. Human allogeneic stem cell maintenance and differentiation in a long-term multilineage SCID-hu graft. Blood. 1995;86(5):1680–93.PubMedGoogle Scholar
  12. 12.
    Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Walzer PD, Kim CK, Linke MJ, Pogue CL, Huerkamp MJ, Chrisp CE, Lerro AV, Wixson SK, Hall E, Shultz LD. Outbreaks of Pneumocystis carinii pneumonia in colonies of immunodeficient mice. Infect Immun. 1989;57(1):62–70.PubMedCentralPubMedGoogle Scholar
  14. 14.
    McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, Peault B, Rabin L, Shih CC, Yee E, Lieberman M, et al. The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol. 1991;9:399–429.CrossRefPubMedGoogle Scholar
  15. 15.
    Peault B, Namikawa R, Krowka J, McCune J. Experimental human hematopoiesis in immunodeficient scid mice engrafted with fetal blood-forming organs. In: Edwards RG Editor. Fetal tissue transplants in medicine. Cambridge: Cambridge University Press; 1992. p. 77–94.Google Scholar
  16. 16.
    Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM. Infection of the SCID-hu mouse by HIV-1. Science. 1988;242(4886):1684–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Vandekerckhove BA, Jones D, Punnonen J, Schols D, Lin HC, Duncan B, Bacchetta R, de Vries JE, Roncarolo MG. Human Ig production and isotype switching in severe combined immunodeficient-human mice. J Immunol. 1993;151(1):128–37.PubMedGoogle Scholar
  18. 18.
    Stoddart CA, Bales CA, Bare JC, Chkhenkeli G, Galkina SA, Kinkade AN, Moreno ME, Rivera JM, Ronquillo RE, Sloan B, Black PL. Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS ONE. 2007;2(7):e655.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Rabin L, Hincenbergs M, Moreno MB, Warren S, Linquist V, Datema R, Charpiot B, Seifert J, Kaneshima H, McCune JM. Use of standardized SCID-hu Thy/Liv mouse model for preclinical efficacy testing of anti-human immunodeficiency virus type 1 compounds. Antimicrob Agents Chemother. 1996;40(3):755–62.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89(7):2804–8.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Peault B, Weissman I, Baum C. Analysis of candidate human blood stem cells in “humanized” immune-deficiency SCID mice. Leukemia. 1993;7(Suppl 2):98–101.Google Scholar
  22. 22.
    Peault B, Weissman IL, Baum C, McCune JM, Tsukamoto A. Lymphoid reconstitution of the human fetal thymus in scid mice with CD34+ precursor cells. J Exp Med. 1991;174(5):1283–86.CrossRefPubMedGoogle Scholar
  23. 23.
    Bonyhadi ML, Moss K, Voytovich A, Auten J, Kalfoglou C, Plavec I, Forestell S, Su L, Bohnlein E, Kaneshima H. RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol. 1997;71(6):4707–16.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Su L, Lee R, Bonyhadi M, Matsuzaki H, Forestell S, Escaich S, Bohnlein E, Kaneshima H. Hematopoietic stem cell-based gene therapy for acquired immunodeficiency syndrome: efficient transduction and expression of RevM10 in myeloid cells in vivo and in vitro. Blood. 1997;89(7):2283–90.PubMedGoogle Scholar
  25. 25.
    Vandekerckhove BA, Krowka JF, McCune JM, de Vries JE, Spits H, Roncarolo MG. Clonal analysis of the peripheral T cell compartment of the SCID-hu mouse. J Immunol. 1991;146(12):4173–9.PubMedGoogle Scholar
  26. 26.
    Vandekerckhove BA, Baccala R, Jones D, Kono DH, Theofilopoulos AN, Roncarolo MG. Thymic selection of the human T cell receptor v beta repertoire in SCID-hu mice. J Exp Med. 1992;176(6):1619–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Vandekerckhove BA, Namikawa R, Bacchetta R, Roncarolo MG. Human hematopoietic cells and thymic epithelial cells induce tolerance via different mechanisms in the SCID-hu mouse thymus. J Exp Med. 1992;175(4):1033–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Roncarolo MG, Vandekerckhove B. Scid-hu mice as a model to study tolerance after fetal stem cell transplantation. Bone Marrow Transplant. 1992;9(Suppl 1):83–4.PubMedGoogle Scholar
  29. 29.
    Baccala R, Vandekerckhove BA, Jones D, Kono DH, Roncarolo MG, Theofilopoulos AN. Bacterial superantigens mediate T cell deletions in the mouse severe combined immunodeficiency-human liver/thymus model. J Exp Med. 1993;177(5):1481–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Kyoizumi S, McCune JM, Namikawa R. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo. Radiat Res. 1994;137(1):76–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Kyoizumi S, Murray LJ, Namikawa R. Preclinical analysis of cytokine therapy in the SCID-hu mouse. Blood. 1993;81(6):1479–88.PubMedGoogle Scholar
  32. 32.
    Namikawa R, Ueda R, Kyoizumi S. Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice. Blood. 1993;82(8):2526–36.PubMedGoogle Scholar
  33. 33.
    Shtivelman E, Namikawa R. Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc Natl Acad Sci U S A. 1995;92(10):4661–5.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Garcia S, Freitas AA. Humanized mice: current states and perspectives. Immunol Lett. 2012;146(1–2):1–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Legrand N, Ploss A, Balling R, Becker PD, Borsotti C, Brezillon N, Debarry J, de Jong Y, Deng H, Di Santo JP, Eisenbarth S, et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe. 2009;6(1):5–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Nischang M, Gers-Huber G, Audige A, Akkina R, Speck RF. Modeling HIV infection and therapies in humanized mice. Swiss Med Wkly. 2012;142:w13618.PubMedGoogle Scholar
  40. 40.
    Drake AC, Chen Q, Chen J. Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol. 2012;9(3):215–24.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Williams SS, Umemoto T, Kida H, Repasky EA, Bankert RB. Engraftment of human peripheral blood leukocytes into severe combined immunodeficient mice results in the long term and dynamic production of human xenoreactive antibodies. J Immunol. 1992;149(8):2830–6.PubMedGoogle Scholar
  43. 43.
    Duchosal MA, Eming SA, McConahey PJ, Dixon FJ. Characterization of hu-pbl-scid mice with high human immunoglobulin serum levels and graft-versus-host disease. Am J Pathol. 1992;141(5):1097–1113.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Greenblatt MB, Vbranac V, Tivey T, Tsang K, Tager AM, Aliprantis AO. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS ONE. 2012;7(9):e44664.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Lombardi G, Nestle FO. Xenogeneic graft-versus-host-disease in NOD-SCID Il-2rgamma null mice display a T-effector memory phenotype. PLoS ONE. 2012;7(8):e44219.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, Laning J, Fodor W, Foreman O, Burzenski L, Chase TH et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol. 2009;157(1):104–18.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Divison of Experimental Medicine, Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  2. 2.San FranciscoUSA
  3. 3.Jackson LaboratoryBar HarborUSA

Personalised recommendations