Skip to main content

49 Cardiovascular Disease in the Bariatric Surgery Patient

  • Chapter
  • First Online:
Minimally Invasive Bariatric Surgery

Abstract

Obesity is a strong risk factor for the development of type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease (CVD). Diet, exercise, and drug therapies have limited potential to achieve significant and sustainable weight loss. Bariatric surgery has emerged as the most successful long-term strategy both in achieving weight loss and in promoting diabetes, hypertension, and hyperlipidemia remission. The malabsorptive procedures, including Roux-en-Y gastric bypass and biliopancreatic diversion, appear particularly effective in achieving diabetes remission. This impact on CVD risk factors appears to translate to a decrease in actual cardiovascular events for obese patients who have undergone bariatric surgery, with very preliminary data suggesting atherosclerosis regression. There is also some evidence to support a mortality benefit after surgical weight loss. In addition, there is now data demonstrating improvement of obesity-associated abnormalities in myocardial structure and function, such as ventricular hypertrophy, diastolic dysfunction, and subclinical systolic dysfunction, after bariatric procedures. The impact of bariatric surgery on heart failure is an area of current investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. World Health Statistics 2011. W.H.O.; 2011. p. 1–171.

    Google Scholar 

  2. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355(8):763–78.

    CAS  PubMed  Google Scholar 

  3. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. J Am Med Assoc. 2012;307(1):56–65.

    Google Scholar 

  4. Caterson ID, Finer N, Coutinho W, Van Gaal LF, Maggioni AP, Torp-Pedersen C, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial. Diabetes Obes Metab. 2012;14(6):523–30.

    CAS  PubMed  Google Scholar 

  5. Ashrafian H, Le Roux CW, Darzi A, Athanasiou T. Effects of bariatric surgery on cardiovascular function. Circulation. 2008;118(20):2091–102.

    PubMed  Google Scholar 

  6. Poirier P, Cornier MA, Mazzone T, Stiles S, Cummings S, Klein S, et al. Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation. 2011;123(15):1683–701.

    PubMed  Google Scholar 

  7. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery. J Am Med Assoc. 2004;292(14):1724–37.

    CAS  Google Scholar 

  8. Sjöström L, Lindroos A-K, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    PubMed  Google Scholar 

  9. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    PubMed  Google Scholar 

  10. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.

    CAS  PubMed  Google Scholar 

  11. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Chaikof E, et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery. J Am Coll Cardiol. 2007;50:1707–32.

    PubMed  Google Scholar 

  12. Poirier P, Alpert MA, Fleisher LA, Thompson PD, Sugerman HJ, Burke LE, et al. Cardiovascular evaluation and management of severely obese patients undergoing surgery: a science advisory from the American Heart Association. Circulation. 2009;120(1):86–95.

    PubMed  Google Scholar 

  13. Lerakis S, Kalogeropoulos AP, El-Chami MF, Georgiopoulou VV, Abraham A, Lynch SA, et al. Transthoracic dobutamine stress echocardiography in patients undergoing bariatric surgery. Obes Surg. 2007;17(11):1475–81.

    PubMed  Google Scholar 

  14. Freedman N, Schechter D, Klein M, Marciano R, Rozenman Y, Chisin R. SPECT attenuation artifacts in normal and overweight persons: insights from a retrospective comparison of Rb-82 positron emission tomography and TI-201 SPECT myocardial perfusion imaging. Clin Nucl Med. 2000;25(12):1019–23.

    CAS  PubMed  Google Scholar 

  15. Legault S, Sénéchal M, Bergeron S, Arsenault M, Tessier M, Guimond J, et al. Usefulness of an accelerated transoesophageal stress echocardiography in the preoperative evaluation of high risk severely obese subjects awaiting bariatric surgery. Cardiovasc Ultrasound. 2010;8:30.

    PubMed Central  PubMed  Google Scholar 

  16. Gugliotti D, Grant P, Jaber W, Aboussouan L, Bae C, Sessler D, et al. Challenges in cardiac risk assessment in bariatric surgery patients. Obes Surg. 2008;18(1):129–33.

    PubMed  Google Scholar 

  17. Brethauer SA, Heneghan HM, Eldar S, Gatmaitan P, Huang H, Kashyap S, et al. Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg Endosc. 2011;25(8):2650–9.

    PubMed  Google Scholar 

  18. Batsis JA, Sarr MG, Collazo-Clavell ML, Thomas RJ, Romero-Corral A, Somers VK, et al. Cardiovascular risk after bariatric surgery for obesity. Am J Cardiol. 2008;102(7):930–7.

    PubMed Central  PubMed  Google Scholar 

  19. Haskell WL, Alderman EL, Fair JM, Maron DJ, Mackey SF, Superko HR, et al. Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation. 1994;89(3):975–90.

    CAS  PubMed  Google Scholar 

  20. Plecka Östlund M, Marsk R, Rasmussen F, Lagergren J, Näslund E. Morbidity and mortality before and after bariatric surgery for morbid obesity compared with the general population. Br J Surg. 2011;98(6):811–6.

    PubMed  Google Scholar 

  21. Priester T, Ault T, Adams T, Hunt S. Coronary calcium scores are lower 5 years after bariatric surgery: evidence for slowed progression of atherosclerosis? Circulation [abstract]. 2009;120:S341–2.

    Google Scholar 

  22. Karason K, Wikstrand J, Sjöström L, Wendelhag I. Weight loss and progression of early atherosclerosis in the carotid artery: a four-year controlled study of obese subjects. Int J Obes Relat Metab Disord. 1999;23(9):948–56.

    CAS  PubMed  Google Scholar 

  23. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    CAS  PubMed  Google Scholar 

  24. Arad Y, Newstein D, Cadet F, Roth M, Guerci AD. Association of multiple risk factors and insulin resistance with increased prevalence of asymptomatic coronary artery disease by an electron-beam computed tomographic study. Arterioscler Thromb Vasc. 2001;21(12):2051–8.

    CAS  Google Scholar 

  25. Voulgari C, Tentolouris N, Dilaveris P, Tousoulis D, Katsilambros N, Stefanadis C. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J Am Coll Cardiol. 2011;58(13):1343–50.

    CAS  PubMed  Google Scholar 

  26. Bays HE. Adiposopathy. J Am Coll Cardiol. 2011;57(25):2461–73.

    CAS  PubMed  Google Scholar 

  27. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96(5):1723–32.

    CAS  PubMed  Google Scholar 

  28. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473–6.

    CAS  PubMed  Google Scholar 

  29. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103(8):1057–63.

    CAS  PubMed  Google Scholar 

  30. Côté M, Cartier A, Reuwer AQ, Arsenault BJ, Lemieux I, Després J-P, et al. Adiponectin and risk of coronary heart disease in apparently healthy men and women (from the EPIC-Norfolk Prospective Population Study). Am J Cardiol. 2011;108(3):367–73.

    PubMed  Google Scholar 

  31. McManus DD, Lyass A, Ingelsson E, Massaro JM, Meigs JB, Aragam J, et al. Relations of circulating resistin and adiponectin and cardiac structure and function: the Framingham offspring study. Obesity. 2012;20(9):1882–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. George J, Patal S, Wexler D, Sharabi Y, Peleg E, Kamari Y, et al. Circulating adiponectin concentrations in patients with congestive heart failure. Heart. 2006;92(10):1420–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Nakamura T, Funayama H, Kubo N, Yasu T, Kawakami M, Saito M, et al. Association of hyperadiponectinemia with severity of ventricular dysfunction in congestive heart failure. Circ J. 2006;70(12):1557–62.

    PubMed  Google Scholar 

  34. Hong SJ, Park CG, Seo HS, Oh DJ, Ro YM. Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press. 2004;13(4):236–42.

    CAS  PubMed  Google Scholar 

  35. Lazar M. Resistin- and obesity-associated metabolic diseases. Horm Metab Res. 2007;39(10):710–6.

    CAS  PubMed  Google Scholar 

  36. Calabro P, Samudio I, Willerson JT, Yeh ETH. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation. 2004;110(21):3335–40.

    CAS  PubMed  Google Scholar 

  37. Takeishi Y, Niizeki T, Arimoto T, Nozaki N, Hirono O, Nitobe J, et al. Serum resistin is associated with high risk in patients with congestive heart failure–a novel link between metabolic signals and heart failure. Circ J. 2007;71(4):460.

    CAS  PubMed  Google Scholar 

  38. Considine R, Sinha M, Heiman M. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    CAS  PubMed  Google Scholar 

  39. Tretjakovs P, Jurka A, Bormane I, Mackevics V, Mikelsone I, Balode L, et al. Relation of inflammatory chemokines to insulin resistance and hypoadiponectinemia in coronary artery disease patients. Eur J Intern Med. 2009;20(7):712–7.

    CAS  PubMed  Google Scholar 

  40. O’Rourke L, Gronning LM, Yeaman SJ, Shepherd PR. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J Biol Chem. 2002;277(45):42557–62.

    PubMed  Google Scholar 

  41. Konstantinides S, Schafer K, Loskutoff DJ. The prothrombotic effects of leptin possible implications for the risk of cardiovascular disease in obesity. Ann N Y Acad Sci. 2001;947:134–41; discussion 141–2.

    CAS  PubMed  Google Scholar 

  42. Schulze PC, Kratzsch J, Linke A, Schoene N, Adams V, Gielen S, et al. Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. Eur J Heart Fail. 2003;5(1):33–40.

    PubMed  Google Scholar 

  43. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N. Obesity and risk of incident heart failure in older men with and without pre-existing coronary heart disease: does leptin have a role? J Am Coll Cardiol. 2011;58(18):1870–7.

    CAS  PubMed  Google Scholar 

  44. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93(4):277–9.

    CAS  PubMed  Google Scholar 

  45. Perego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, et al. Circulating leptin correlates with left ventricular mass in morbid (grade III) obesity before and after weight loss induced by bariatric surgery: a potential role for leptin in mediating human left ventricular hypertrophy. J Clin Endocrinol Metab. 2005;90(7):4087–93.

    CAS  PubMed  Google Scholar 

  46. Leichman J, Wilson E, Scarborough T, Aguilar D, Miller C, Yu S, et al. Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery. Am J Med. 2008;121(11):966–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Purdham DM, Zou M-X, Rajapurohitam V, Karmazyn M. Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol. 2004;287(6):H2877–84.

    CAS  PubMed  Google Scholar 

  48. Madani S, De Girolamo S, Muñoz DM, Li RK, Sweeney G. Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovasc Res. 2006;69(3):716–25.

    CAS  PubMed  Google Scholar 

  49. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107(5):671–4.

    CAS  PubMed  Google Scholar 

  50. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107(3):363–9.

    PubMed  Google Scholar 

  51. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107(3):391–7.

    PubMed  Google Scholar 

  52. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation. 2003;107(3):398–404.

    CAS  PubMed  Google Scholar 

  53. Wang C-H, Li S-H, Weisel RD, Fedak PWM, Dumont AS, Szmitko P, et al. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation. 2003;107(13):1783–90.

    CAS  PubMed  Google Scholar 

  54. Verma S, Wang C-H, Li S-H, Dumont AS, Fedak PWM, Badiwala MV, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106(8):913–9.

    CAS  PubMed  Google Scholar 

  55. Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol. 1998;18(1):1–6.

    CAS  PubMed  Google Scholar 

  56. Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes Relat Metab Disord. 2005;29(1):146–50.

    CAS  Google Scholar 

  57. Kalupahana NS, Massiera F, Quignard-Boulange A, Ailhaud G, Voy BH, Wasserman DH, et al. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity (Silver Spring). 2012;20(1):48–56.

    CAS  Google Scholar 

  58. Kopp HP. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc. 2003;23(6):1042–7.

    CAS  Google Scholar 

  59. Woelnerhanssen B, Peterli R, Steinert RE, Peters T, Borbély Y, Beglinger C. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy—a prospective randomized trial. Surg Obes Relat Dis. 2011;7(5):561–8.

    PubMed  Google Scholar 

  60. Roux CWL, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–14.

    PubMed Central  PubMed  Google Scholar 

  61. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13.

    PubMed  Google Scholar 

  62. Nagaya N, Uematsu M, Kojima M, Ikeda Y, Yoshihara F, Shimizu W, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104(12):1430–5.

    CAS  PubMed  Google Scholar 

  63. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. Br Med J. 2012;344:d7771.

    Google Scholar 

  64. Noyan-Ashraf MH, Momen MA, Ban K, Sadi A-M, Zhou Y-Q, Riazi AM, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58(4):975–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209–15.

    PubMed  Google Scholar 

  66. Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240(2):236–42.

    PubMed Central  PubMed  Google Scholar 

  67. Le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005;90(2):1068–71.

    PubMed  Google Scholar 

  68. Buchwald H, Varco RL. A bypass operation for obese hyperlipidemic patients. Surgery. 1971;70(1):62–70.

    CAS  PubMed  Google Scholar 

  69. Garcia-Marirrodriga I, Amaya-Romero C, Ruiz-Diaz GP, Férnandez S, Ballesta-López C, Pou JM, et al. Evolution of lipid profiles after bariatric surgery. Obes Surg. 2012;22(4):609–16.

    PubMed  Google Scholar 

  70. Fernstrom JD, Courcoulas AP, Houck PR, Fernstrom MH. Long-term changes in blood pressure in extremely obese patients who have undergone bariatric surgery. Arch Surg. 2006;141(3):276–83.

    PubMed  Google Scholar 

  71. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.

    PubMed  Google Scholar 

  72. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. J Am Med Assoc. 2012;308(11):1122–31.

    CAS  Google Scholar 

  73. Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98(24):1763–77.

    PubMed  Google Scholar 

  74. Livingston EH, Arterburn D, Schifftner TL, Henderson WG, DePalma RG. National Surgical Quality Improvement Program analysis of bariatric operations: modifiable risk factors contribute to bariatric surgical adverse outcomes. J Am Coll Surg. 2006;203(5):625–33.

    PubMed  Google Scholar 

  75. Torquati A, Wright K, Melvin W, Richards W. Effect of gastric bypass operation on Framingham and actual risk of cardiovascular events in class II to III obesity. J Am Coll Surg. 2007;204(5):776–82.

    PubMed  Google Scholar 

  76. Romeo S, Maglio C, Burza MA, Pirazzi C, Sjoholm K, Jacobson P, et al. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care. 2012;35(12):2613–7; published online August 1, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. MacDonald KG, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, et al. The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg. 1997;1(3):213–20; discussion 220.

    PubMed  Google Scholar 

  78. Christou NV, Sampalis JS, Liberman M, Look D, Auger S, McLean APH, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240(3):416–23; discussion 423–4.

    PubMed Central  PubMed  Google Scholar 

  79. Sampalis JS, Sampalis F, Christou N. Impact of bariatric surgery on cardiovascular and musculoskeletal morbidity. Surg Obes Relat Dis. 2006;2(6):587–91.

    PubMed  Google Scholar 

  80. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88(2):389–419.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Morricone L, Malavazos AE, Coman C, Donati C, Hassan T, Caviezel F. Echocardiographic abnormalities in normotensive obese patients: relationship with visceral fat. Obes Res. 2002;10(6):489–98.

    PubMed  Google Scholar 

  82. Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the multi-ethnic study of atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74.

    PubMed Central  PubMed  Google Scholar 

  83. Garza CA, Pellikka PA, Somers VK, Sarr MG, Collazo-Clavell ML, Korenfeld Y, et al. Structural and functional changes in left and right ventricles after major weight loss following bariatric surgery for morbid obesity. Am J Cardiol. 2010;105(4):550–6.

    PubMed  Google Scholar 

  84. Pontiroli AE, Laneri M, Veronelli A, Frigè F, Micheletto G, Folli F, et al. Biliary pancreatic diversion and laparoscopic adjustable gastric banding in morbid obesity: their long-term effects on metabolic syndrome and on cardiovascular parameters. Cardiovasc Diabetol. 2009;8:37–43.

    PubMed Central  PubMed  Google Scholar 

  85. Leichman JG, Aguilar D, King TM, Mehta S, Majka C, Scarborough T, et al. Improvements in systemic metabolism, anthropometrics, and left ventricular geometry 3 months after bariatric surgery. Surg Obes Relat Dis. 2006;2(6):592–9.

    PubMed Central  PubMed  Google Scholar 

  86. Ikonomidis I, Mazarakis A, Papadopoulos C, Patsouras N, Kalfarentzos F, Lekakis J, et al. Weight loss after bariatric surgery improves aortic elastic properties and left ventricular function in individuals with morbid obesity: a 3-year follow-up study. J Hypertens. 2007;25(2):439–47.

    CAS  PubMed  Google Scholar 

  87. Willens HJ, Chakko SC, Byers P, Chirinos JA, Labrador E, Castrillon JC, et al. Effects of weight loss after gastric bypass on right and left ventricular function assessed by tissue Doppler imaging. Am J Cardiol. 2005;95(12):1521–4.

    PubMed  Google Scholar 

  88. de Cunha L, da Cunha CL, de Souza AM, Chiminacio Neto N, Pereira RS, Suplicy HL. Evolutive echocardiographic study of the structural and functional heart alterations in obese individuals after bariatric surgery. Arq Bras Cardiol. 2006;87(5):615–22.

    PubMed  Google Scholar 

  89. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110(19):3081–7.

    PubMed  Google Scholar 

  90. Rider OJ, Francis JM, Ali MK, Petersen SE, Robinson M, Robson MD, et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J Am Coll Cardiol. 2009;54(8):718–26.

    PubMed  Google Scholar 

  91. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R. Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Curr Cardiol Rev. 2009;5(2):133–48.

    PubMed Central  PubMed  Google Scholar 

  92. Barbosa MM, Beleigoli AM, de Fatima DM, Freire CV, Ribeiro AL, Nunes MCP. Strain imaging in morbid obesity: insights into subclinical ventricular dysfunction. Clin Cardiol. 2011;34(5):288–93.

    PubMed  Google Scholar 

  93. Orhan AL, Uslu N, Dayi SU, Nurkalem Z, Uzun F, Erer HB, et al. Effects of isolated obesity on left and right ventricular function: a Tissue Doppler and Strain Rate Imaging Study. Echocardiography. 2010;27(3):236–43.

    PubMed  Google Scholar 

  94. Di Bello V, Santini F, Di Cori A, Pucci A, Talini E, Palagi C, et al. Effects of bariatric surgery on early myocardial alterations in adult severely obese subjects. Cardiology. 2008;109(4):241–8.

    PubMed  Google Scholar 

  95. Chen Y, Vaccarino V, Williams C, Butler J, Berkman L, Krumholz H. Risk factors for heart failure in the elderly: a prospective community-based study. Am J Med. 1999;106(6):605–12.

    CAS  PubMed  Google Scholar 

  96. Kenchaiah S, Sesso HD, Gaziano JM. Body mass index and vigorous physical activity and the risk of heart failure among men. Circulation. 2009;119(1):44–52.

    PubMed Central  PubMed  Google Scholar 

  97. Djoussé L, Bartz TM, Ix JH, Zieman SJ, Delaney JA, Mukamal KJ, et al. Adiposity and incident heart failure in older adults: the Cardiovascular Health Study. Obesity (Silver Spring). 2012;20(9):1936–41.

    Google Scholar 

  98. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.

    PubMed  Google Scholar 

  99. Zuber M, Kaeslin T, Studer T, Erne P. Weight loss of 146 kg with diet and reversal of severe congestive heart failure in a young, morbidly obese patient. Am J Cardiol. 1999;84(8):955–6.

    CAS  PubMed  Google Scholar 

  100. Iyengar S, Leier C. Rescue bariatric surgery for obesity-induced cardiomyopathy. Am J Med. 2006;119(12):e5–6.

    PubMed  Google Scholar 

  101. Ristow B, Rabkin J, Haeusslein E. Improvement in dilated cardiomyopathy after bariatric surgery. J Card Fail. 2008;14(3):198–202.

    PubMed  Google Scholar 

  102. Alpert MA, Terry BE, Kelly DL. Effect of weight loss on cardiac chamber size, wall thickness and left ventricular function in morbid obesity. Am J Cardiol. 1985;55(6):783–6.

    CAS  PubMed  Google Scholar 

  103. Alpert MA, Terry BE, Mulekar M, Cohen MV, Massey CV, Fan TM. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol. 1997;80(6):736–40.

    CAS  PubMed  Google Scholar 

  104. McCloskey CA, Ramani GV, Mathier MA, Schauer PR, Eid GM, Mattar SG, et al. Bariatric surgery improves cardiac function in morbidly obese patients with severe cardiomyopathy. Surg Obes Relat Dis. 2007;3(5):503–7.

    CAS  PubMed  Google Scholar 

  105. Ramani GV, McCloskey C, Ramanathan RC, Mathier MA. Safety and efficacy of bariatric surgery in morbidly obese patients with severe systolic heart failure. Clin Cardiol. 2008;31(11):516–20.

    PubMed  Google Scholar 

  106. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38(3):789–95.

    CAS  PubMed  Google Scholar 

  107. Lavie CJ, Osman AF, Milani RV, Mehra MR. Body composition and prognosis in chronic systolic heart failure: the obesity paradox. Am J Cardiol. 2003;91(7):891–4.

    PubMed  Google Scholar 

  108. Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Jadbabaie F, et al. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005;165(1):55–61.

    PubMed  Google Scholar 

  109. Fonarow GC, Srikanthan P, Costanzo MR, Cintron GB, Lopatin M, ADHERE Scientific Advisory Committee and Investigators. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry. Am Heart J. 2007;153(1):74–81.

    PubMed  Google Scholar 

  110. Futter JE, Cleland JGF, Clark AL. Body mass indices and outcome in patients with chronic heart failure. Eur J Heart Fail. 2011;13(2):207–13.

    PubMed  Google Scholar 

  111. Adamopoulos C, Meyer P, Desai RV, Karatzidou K, Ovalle F, White M, et al. Absence of obesity paradox in patients with chronic heart failure and diabetes mellitus: a propensity-matched study. Eur J Heart Fail. 2011;13(2):200–6.

    PubMed Central  PubMed  Google Scholar 

  112. Coutinho T, Goel K, Corrêa de Sá D, Kragelund C, Kanaya AM, Zeller M, et al. Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J Am Coll Cardiol. 2011;57(19):1877–86.

    PubMed  Google Scholar 

  113. Clark AL, Fonarow GC, Horwich TB. Waist circumference, body mass index, and survival in systolic heart failure: the obesity paradox revisited. J Card Fail. 2011;17(5):374–80.

    PubMed  Google Scholar 

  114. Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361(9363):1077–83.

    CAS  PubMed  Google Scholar 

  115. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005.

    PubMed  Google Scholar 

  116. Russo V, Ammendola E, Crescenzo I, Ricciardi D, Capuano P, Topatino A, et al. Effect of weight loss following bariatric surgery on myocardial dispersion of repolarization in morbidly obese patients. Obes Surg. 2007;17(7):857–65.

    PubMed  Google Scholar 

  117. Bezante GP, Scopinaro A, Papadia F, Campostano A, Camerini G, Marinari G, et al. Biliopancreatic diversion reduces QT interval and dispersion in severely obese patients. Obesity. 2007;15(6):1448–54.

    PubMed  Google Scholar 

  118. Russo V, Ammendola E, De Crescenzo I, Docimo L, Santangelo L, Calabrò R. Severe obesity and P-wave dispersion: the effect of surgically induced weight loss. Obes Surg. 2008;18(1):90–6.

    PubMed  Google Scholar 

  119. Sultan S, Gupta D, Parikh M, Youn H, Kurian M, Fielding G, et al. Five-year outcomes of patients with type 2 diabetes who underwent laparoscopic adjustable gastric banding. Surg Obes Relat Dis. 2010;6(4):373–6.

    PubMed  Google Scholar 

  120. Sugerman HJ, Wolfe LG, Sica DA, Clore JN. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg. 2003;237(6):751–6; discussion 757–8.

    PubMed Central  PubMed  Google Scholar 

  121. Steffen R, Potoczna N, Bieri N, Horber FF. Successful multi-intervention treatment of severe obesity: a 7-year prospective study with 96% follow-up. Obes Surg. 2009;19(1):3–12.

    PubMed  Google Scholar 

  122. Bolen SD, Chang H-Y, Weiner JP, Richards TM, Shore AD, Goodwin SM, et al. Clinical outcomes after bariatric surgery: a five-year matched cohort analysis in seven US states. Obes Surg. 2012;22(5):749–63.

    PubMed Central  PubMed  Google Scholar 

  123. Flum DR, Dellinger EP. Impact of gastric bypass operation on survival: a population-based analysis. J Am Coll Surg. 2004;199(4):543–51.

    PubMed  Google Scholar 

  124. Sowemimo OA, Yood SM, Courtney J, Moore J, Huang M, Ross R, et al. Natural history of morbid obesity without surgical intervention. Surg Obes Relat Dis. 2007;3(1):73–7; discussion 77.

    PubMed  Google Scholar 

  125. Busetto L, Mirabelli D, Petroni ML, Mazza M, Favretti F, Segato G, et al. Comparative long-term mortality after laparoscopic adjustable gastric banding versus nonsurgical controls. Surg Obes Relat Dis. 2007;3(5):496–502; discussion 502.

    PubMed  Google Scholar 

  126. Peeters A, O’Brien PE, Laurie C, Anderson M, Wolfe R, Flum D, et al. Substantial intentional weight loss and mortality in the severely obese. Ann Surg. 2007;246(6):1028–33.

    PubMed  Google Scholar 

  127. Maciejewski ML, Livingston EH, Smith VA, Kavee AL, Kahwati LC, Henderson WG, et al. Survival among high-risk patients after bariatric surgery. J Am Med Assoc. 2011;305(23):2419–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Young M.D., F.A.C.C. .

Editor information

Editors and Affiliations

Review Questions and Answers

Review Questions and Answers

  1. 1.

    Which of the following statements regarding coronary artery disease epidemiological risk factors is correct?

    1. (a)

      LDL serum concentration is inversely associated with cardiovascular mortality.

    2. (b)

      Systolic blood pressure is an independent coronary artery disease risk factor.

    3. (c)

      The strongest predictor of cardiovascular risk in the Framingham equation is body mass index (BMI).

    4. (d)

      Obesity is not an independent predictor of coronary artery disease risk.

    5. (e)

      HDL serum concentration has been observed to rise significantly within the first postoperative week of Roux-en-Y gastric bypass (RYGB).

      Correct answer: (b) Systolic blood pressure is one of the six major epidemiological risk factors for coronary artery disease development and cardiovascular events. The other major risk factors are advancing age, smoking, family history, elevated serum LDL or total cholesterol, low serum HDL, and diabetes. Diabetes is usually considered as a “coronary artery disease equivalent” in terms of risk prevention, because patients with diabetes and no known coronary artery disease have a similar risk of cardiovascular events as patients without diabetes who have a known coronary artery disease diagnosis. Obesity is also an independent predictor of coronary artery disease development, although it is a weaker association than the six major risk factors. The strongest predictor of cardiovascular risk in any risk equation, including the Framingham Risk Score, is patient age. Serum HDL, for which higher levels confer cardiovascular risk benefits, was observed by Garcia-Marirrodriga et al. [69] to decrease by 13.0 % at 6 months and then steadily increase by 3.8 % at 12 months and 19.3 % at 18 months.

  2. 2.

    Which of the following statements regarding adipokines and gut hormones is correct?

    1. (a)

      Circulating leptin levels are consistently low in obese individuals, compared to normal-weight controls.

    2. (b)

      Resistin, a cysteine-rich protein secreted primarily by adipose tissue, promotes insulin sensitivity and is anti-inflammatory.

    3. (c)

      CRP is an independent predictor of future cardiovascular risk in asymptomatic women and has been observed to fall significantly in the months after bariatric surgery.

    4. (d)

      GLP-1 agonists are a group of new diabetes medications that show significant reductions in glycemic parameters but with the adverse effect of weight gain in many patients.

    5. (e)

      Ghrelin is the gut hormone with the strongest evidence for mediation of the post-RYGB effects on glycemia.

      Correct answer: (c) Ridker et al. [51] described the relationships between CRP, the metabolic syndrome, and incident cardiovascular events among 14,719 apparently healthy women who were followed up for an 8-year period for myocardial infarction, stroke, coronary revascularization, or cardiovascular death. At all levels of severity of the metabolic syndrome, CRP added prognostic information on subsequent risk. Circulating leptin levels are elevated in obese states other than that due to leptin gene mutation, due to leptin resistance. Resistin is an adipokine that promotes insulin resistance, gluconeogenesis, and a pro-inflammatory state. The GLP-1 agonists are subcutaneously injected diabetes medications that also promote small but significant decreases in body weight during treatment duration. Ghrelin responses after RYGB are quite heterogeneous and are therefore less likely to explain reduced appetite and improved glucose homeostasis postoperatively than some of the other gut hormones and adipokines.

  3. 3.

    An asymptomatic 50-year-old patient with a BMI of 45 kg/m2 and diagnoses of coronary artery disease and diabetes presents for bariatric surgery evaluation. Which of the following statements are incorrect?

    1. (a)

      Compensated systolic heart failure is not a contraindication to bariatric surgery.

    2. (b)

      Markers of inflammation and endothelial function improve in the weeks and months after bariatric surgery.

    3. (c)

      He must undergo cardiac catheterization, with angioplasty of any significant coronary stenosis, before proceeding to the surgery.

    4. (d)

      Existing data suggests a lower rate of future cardiovascular events for patients who undergo bariatric surgery, compared to obese matched controls.

    5. (e)

      Large trials have demonstrated decreases in long-term cardiovascular events in patients who undergo bariatric surgery, compared to patients who receive optimal medical therapy, but none of these studies to date have been randomized.

      Correct answer: (c) Preoperative noninvasive cardiac stress testing or cardiac catheterization is only indicated in a select group of high-risk surgical candidates and not in patients with stable chronic coronary artery disease. Answers (a) and (b) are true statements. Although several studies have performed robust matching techniques in the selection of nonsurgical control groups, none of the studies of cardiovascular event or mortality studies has been randomized controlled trials. Therefore, (d) and (e) are also true statements.

  4. 4.

    Which of the following statements regarding myocardial structure and function is correct?

    1. (a)

      Left ventricular hypertrophy reduces more than right ventricular hypertrophy after surgical weight loss.

    2. (b)

      Obesity is a strong risk factor for diastolic dysfunction, and significant improvements in parameters of myocardial relaxation have been seen within the first postoperative year of bariatric surgery.

    3. (c)

      Reductions in left ventricular hypertrophy after RYGB are solely dependent on the postoperative reduction in systolic blood pressure.

    4. d)

      The left ventricular ejection fraction consistently increases postoperatively, both in patients with preexisting heart failure and in patients without prior cardiomyopathies.

    5. (e)

      Left ventricular ejection fraction is the most sensitive and widely used method of measuring mild reductions in systolic function.

      Correct answer: (b) Obesity, diabetes, and hypertension all increase the risk of diastolic dysfunction, in which ventricular filling during diastole is abnormal. Improvements in left ventricular hypertrophy and echocardiographic parameters of diastolic dysfunction have been seen as early as 3 months postoperatively. In an MRI study by Rider et al. [90], right ventricular wall thickening was seen to regress by a much greater degree than left ventricular wall thickening. Several authors have demonstrated that post-bariatric surgery improvements in left ventricular hypertrophy are independent of systolic blood pressure. In patients without preexisting systolic heart failure, stroke volume and left ventricular ejection fraction tend to decrease slightly with weight loss. There is limited data to suggest that some patients with systolic heart failure may experience a postoperative improvement in their left ventricular ejection faction. The ejection fraction is a relatively crude assessment of systolic function, and echocardiographic techniques such as strain and strain rate measurement offer much more sensitive assessments of subclinical abnormalities of systolic function.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vest, A.R., Young, J.B. (2015). 49 Cardiovascular Disease in the Bariatric Surgery Patient. In: Brethauer, S., Schauer, P., Schirmer, B. (eds) Minimally Invasive Bariatric Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1637-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1637-5_49

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1636-8

  • Online ISBN: 978-1-4939-1637-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics