Skip to main content

Photo-Fuel-Cells: An Alternative Route for Solar Energy Conversion

  • Chapter
  • First Online:
Materials and Processes for Solar Fuel Production

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

Summary

The present work introduces photo-fuel-cells (PFCs) as an alternative means of solar energy conversion with simultaneous degradation of water soluble wastes. A PFC takes the structure of a standard photoelectrochemical cell. The photoanode carries the photocatalyst, which is a nanostructured oxide semiconductor, typically, nanoparticulate titania combined with a quantum dot sensitizer, which provides functionality in the Visible. Only medium bandgap semiconductors like CdS or combined CdS-ZnS may act as sensitizers. Low bandgap semiconductors like CdSe or PbS cannot be employed as sensitizers because of their low oxidation capacity that affects the oxidation capacity of the combined photocatalyst. This is important since the PFC functions by photocatalytic degradation of the fuel and its functionality is preserved, thanks to the sacrifice of the fuel. The principal function of the PFC is to produce electricity; however, it may also be used to produce solar fuels, for example, hydrogen. In that case, the cell functions only under bias. When it is operated to solely produce electricity, then the cathode electrode must be aerated. The present work is a short review of our recent experience in the study of photo-fuel-cells and proposes some measures for the improvement of their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaneko, M.; Nemoto, J.; Ueno, H.; Gokan, N.; Ohnuki, K.; Horikawa, M.; Saito, R.; Shibata, T. Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem. Commun. 2006, 8, 336-340.

    Article  CAS  Google Scholar 

  2. Lianos, P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the Photofuelcell: A review of a re-emerging research field. J. Hazardous Mater, 2011, 185, 575-590.

    Article  CAS  Google Scholar 

  3. Antoniadou, M.; Lianos, P. A photoactivated fuel cell used as an apparatus that consumes organic wastes to produce electricity. Photochem. Photobiol. Sci. 2011, 10, 431-435.

    Article  CAS  Google Scholar 

  4. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.

    Article  CAS  Google Scholar 

  5. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595-6663.

    Article  CAS  Google Scholar 

  6. Ruhle, S.; Shalom, M.; Zaban, A. Quantum-Dot-Sensitized Solar Cells. ChemPhysChem 2010, 11, 2290-2304.

    Article  Google Scholar 

  7. Chouhan, N.; Yeh, C.L.; Hu, S-F.; Liu, R-S.; Chang, W-S.; Chen, K-H. Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water. Chem. Commun. 2011, 47, 3493-3495.

    Article  CAS  Google Scholar 

  8. Antoniadou, M.; Kondarides, D.I.; Dionysiou, D.D.; Lianos, P. Quantum Dot Sensitized Titania Applicable as Photoanode in Photoactivated Fuel Cells. J. Phys. Chem. C 2012, 116, 16901-16909.

    Article  CAS  Google Scholar 

  9. Panagiotopoulou, P.; Antoniadou, M.; Kondarides, D.I.; Lianos, P. Aldol condensation products during photocatalytic oxidation of ethanol in a photoelectrochemical cell. Appl. Catal. B 2010, 100, 124-132.

    Article  CAS  Google Scholar 

  10. Yu, H.; Irie, H.; Hashimoto, K. Conduction Band Energy Level Control of Titanium Dioxide: Toward an Efficient Visible-Light-Sensitive Photocatalyst. J. Am. Chem. Soc. 2010, 132, 6898-6899.

    Article  CAS  Google Scholar 

  11. Antoniadou, M.; Lianos, P. Near Ultraviolet and Visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen. J. Photochem. Photobiol. A 2009, 204, 69-74.

    Article  CAS  Google Scholar 

  12. Antoniadou, M.; Lianos, P. Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell. Appl. Catal. B 2010, 99, 307-313.

    Article  CAS  Google Scholar 

  13. Antoniadou, M.; Panagiotopoulou, P.; Kondarides, D.I.; Lianos, P. Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts. J. Appl. Electrochem. 2012, 42, 737-743.

    Article  CAS  Google Scholar 

  14. Kawai, M.; Kawai, T.; Naito, S.; Tamaru, K. The mechanism of photocatalytic reaction over Pt/TiO2: Production of H2 and aldehyde from gaseous alcohol and water. Chem. Phys. Lett. 1984, 110, 58-62.

    Article  CAS  Google Scholar 

  15. Lee, Y-L.; Chi, C-F.; Liau S-Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell. Chem. Mater. 2010, 22, 922-927.

    Article  CAS  Google Scholar 

  16. Kim, H.S.; Jeong, N.C.; Yoon, K.B. Photovoltaic Effects of CdS and PbS Quantum Dots Encapsulated in Zeolite Y. Langmuir 2011, 27, 14678-14688.

    Article  CAS  Google Scholar 

  17. Seger, B.; Kamat, P.V. Fuel Cell Geared in Reverse: Photocatalytic Hydrogen Production Using a TiO2/Nafion/Pt Membrane Assembly with No Applied Bias. J. Phys. Chem. C 2009, 113, 18946-18952.

    Article  CAS  Google Scholar 

  18. Seger, B.; Lu, G.Q.M.; Wang, L. Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. J. Mater. Chem. 2012, 22, 10709-10715.

    Article  CAS  Google Scholar 

  19. Balis, N.; Dracopoulos, V.; Stathatos, E.; Boukos, N.; Lianos P. A Solid-State Hybrid Solar Cell Made of nc-TiO2, CdS Quantum Dots, and P3HT with 2-Amino-1-methylbenzimidazole as an Interface Modifier. J. Phys. Chem. C 2011, 115, 10911-10916.

    Article  CAS  Google Scholar 

  20. Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Pechy P.; Gratzel M. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt: Res. Appl, 2007, 15, 603-612.

    Article  CAS  Google Scholar 

  21. Pathan H. M.; Lokhande C. D. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 2004, 27, 85-111.

    Article  CAS  Google Scholar 

  22. Shen, Q.; Kobayashi, J., Diguna L.J.; Toyoda, T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 2008, 103, 0843041-5.

    Google Scholar 

  23. Gorer, S.; Hodes, G. Quantum Size Effects in the Study of Chemical Solution Deposition Mechanisms of Semiconductor Films. J. Phys. Chem. 1994, 98, 5338-5346.

    Article  CAS  Google Scholar 

  24. Antoniadou, M.; Kondarides, D.I.; Labou, D.; Neophytides, S.; Lianos, P. An efficient photoelectrochemical cell functioning in the presence of organic wastes. Sol. Energy Mater. Sol. Cells 2010, 94, 592-597.

    Article  CAS  Google Scholar 

  25. Krebs, F.C.; Thomann, Y.; Thomann, R.; Andreasen, J.W. A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air. Nanotechnology 2008, 19, 424013-424025.

    Article  Google Scholar 

  26. Sondergaard, R.R.; Makris, T.; Lianos, P.; Manor, A.; Katz, E.A.; Gong, W.; Tuladhar, S.M.; Nelson, J.; Tuomi, R.; Sommeling, P.; Veenstra, S.C.; Rivaton, A.; Dupuis, A.; Teran-Escobar, G.; Lira-Cantu, M.; Sapkota, S.B.; Zimmermann, B.; Wurfel, U.; Matzarakis, A.; Krebs, F.C. The use of polyurethane as encapsulating method for polymer solar cells—An inter laboratory study on outdoor stability in 8 countries. Sol. Energy Mater. Sol. Cells, 2012, 99, 292-300.

    Article  CAS  Google Scholar 

  27. Xu, J.; Yang, X.; Yang, Q-D.; Wong, T-L.; Lee, S-T.; Zhang, W-J.; Lee, C-S. Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage. J. Mater. Chem. 2012, 22, 13374-13379.

    Article  CAS  Google Scholar 

  28. Kalyanasundaram, K.; Gratzel, M. Themed issue: nanomaterials for energy conversion and storage. J. Mater. Chem. 2012, 22, 24190-24194.

    Article  CAS  Google Scholar 

  29. Varghese, O.K.; Grimes, C.A. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. Solar Energy Materials and Solar Cells 2008, 92, 374-384.

    Article  CAS  Google Scholar 

  30. Tode, R.; Ebrahimi, A.; Fukumoto, S.; Iyatani, K.; Takeuchi, M.; Matsuoka, M.; Lee, C.H.; Jiang, C-S.; Anpo, M. Photocatalytic Decomposition of Water on Doublelayered Visible Light-responsive TiO2 Thin Films Prepared by a Magnetron Sputtering Deposition Method. Catal. Lett. 2010, 135, 10-15.

    Article  CAS  Google Scholar 

  31. Mohapatra, S.K.; Misra, M.; Mahajan, V.K.; Raja, K.S. Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. J. Phys. Chem. C 2007, 111, 8677-8685.

    Article  CAS  Google Scholar 

  32. Matsuoka, M.; Kitano, M.; Fukumoto, S.; Iyatani, K.; Takeuchi, M.; Anpo, M. The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films. Catal. Today 2008, 132, 159-164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales. MIS379320. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Lianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antoniadou, M., Lianos, P. (2014). Photo-Fuel-Cells: An Alternative Route for Solar Energy Conversion. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_7

Download citation

Publish with us

Policies and ethics