Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges

  • Jenny Schneider
  • Tarek A. Kandiel
  • Detlef W. Bahnemann
Part of the Nanostructure Science and Technology book series (NST, volume 174)


Due to the increase of the worldwide demand for energy along with the global warming and the increasing level of atmospheric CO2, solar hydrogen has been proposed as an optimal fuel as it can be produced from water using solar energy which emerges as the most promising energy source in terms of abundance and sustainability. So far the main commercial process for producing hydrogen is steam reforming of hydrocarbons which is connected with a CO2 emission disadvantage. Carbon free hydrogen production can be achieved by water splitting through an electrolyser powered by photovoltaics, but a potentially more cost effective route is to perform direct photocatalytic water splitting using semiconductor photocatalysts. Herein, the authors will present the principles of this process, the current progress in the field, and future challenges.


Photocatalytic Activity Hydrogen Production Water Splitting Photogenerated Electron Photogenerated Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the BMBF (Bundesministerium für Bildung und Forschung) within the project HyCats (Grant No. 01RC1012C) and from the Gottfried Wilhelm Leibniz University of Hanover within the WiF II project No. 60420974 is gratefully acknowledged. The authors thank Dr. R. Dillert for the stimulating discussions.


  1. 1.
    Navarro, R. M.; Sanchez-Sanchez, M. C.; Alvarez-Galvan, M. C.; del Valle, F.; Fierro, J. L. G., Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci. 2009, 2 (1), 35-54.CrossRefGoogle Scholar
  2. 2.
    Navarro, R. M.; Pena, M. A.; Fierro, J. L. G., Hydrogen production reactions from carbon feedstocks: Fossils fuels and biomass. Chem. Rev. 2007, 107 (10), 3952-3991.CrossRefGoogle Scholar
  3. 3.
    Hamelinck, C. N.; Faaij, A. P. C., Future prospects for production of methanol and hydrogen from biomass. J. Power Sources 2002, 111 (1), 1-22.CrossRefGoogle Scholar
  4. 4.
    Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.CrossRefGoogle Scholar
  5. 5.
    Mills, A.; Davies, R. H.; Worsley, D., Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22 (6), 417-425.CrossRefGoogle Scholar
  6. 6.
    Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95 (1), 69-96.CrossRefGoogle Scholar
  7. 7.
    Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758.CrossRefGoogle Scholar
  8. 8.
    Osterloh, F. E., Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20 (1), 35-54.CrossRefGoogle Scholar
  9. 9.
    Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.CrossRefGoogle Scholar
  10. 10.
    van de Krol, R.; Liang, Y.; Schoonman, J., Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18 (20), 2311-2320.CrossRefGoogle Scholar
  11. 11.
    Shimura, K.; Yoshida, H., Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 2011, 4 (7), 2467-2481.CrossRefGoogle Scholar
  12. 12.
    Sivula, K.; Le Formal, F.; Gratzel, M., Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 2011, 4 (4), 432-449.CrossRefGoogle Scholar
  13. 13.
    Maeda, K.; Domen, K., Photocatalytic Water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1 (18), 2655-2661.CrossRefGoogle Scholar
  14. 14.
    Sato, S.; White, J. M., Photo-decomposition of water over P-TiO2 catalysts. Chem. Phys. Lett. 1980, 72 (1), 83-86.CrossRefGoogle Scholar
  15. 15.
    Maeda, K.; Domen, K., New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 2007, 111 (22), 7851-7861.CrossRefGoogle Scholar
  16. 16.
    Weber, M. F.; Dignam, M. J., Splitting water with semiconducting photoelectrodes: Efficiency considerations. Int. J. Hydrogen Energy 1986, 11 (4), 225-232.CrossRefGoogle Scholar
  17. 17.
    Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A., Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006, 31 (14), 1999-2017.CrossRefGoogle Scholar
  18. 18.
    Bolton, J. R.; Strickler, S. J.; Connolly, J. S., Limiting and realizable efficiencies of solar photolysis of water. Nature 1985, 316 (6028), 495-500.CrossRefGoogle Scholar
  19. 19.
    National Renewable Energy Laboratory (NREL) website:
  20. 20.
    Takanabe, K.; Domen, K., Preparation of Inorganic Photocatalytic materials for overall water splitting. ChemCatChem 2012, 4 (10), 1485-1497.Google Scholar
  21. 21.
    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production; Final Report; U.S. Department of Energy: December 2009.Google Scholar
  22. 22.
    Memming, R., Photoinduced charge-transfer processes at semiconductor electrodes and particles. In Electron Transfer I, 1994; Vol. 169, pp. 105-181.Google Scholar
  23. 23.
    Prieto-Mahaney, O. O.; Murakami, N.; Abe, R.; Ohtani, B., Correlation between photocatalytic activities and structural and physical properties of titanium(IV) oxide Powders. Chem. Lett. 2009, 38 (3), 238-239.CrossRefGoogle Scholar
  24. 24.
    Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W., Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 2010, 22 (6), 2050-2060.CrossRefGoogle Scholar
  25. 25.
    Mills, A.; Porter, G., Photosensitized dissociation of water using dispersed suspensions of n-type semiconductors. J. Chem. Soc.-Faraday Trans. I 1982, 78, 3659-3669.CrossRefGoogle Scholar
  26. 26.
    Yamaguti, K.; Sato, S., Photolysis of Water over Metallized Powdered Titanium-Dioxide. J. Chem. Soc.-Faraday Transactions I 1985, 81, 1237-1246.CrossRefGoogle Scholar
  27. 27.
    Sayama, K.; Arakawa, H., Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum titanium(IV) oxide suspension. J. Chem. Soc.-Chem. Commun. 1992, (2), 150-152.CrossRefGoogle Scholar
  28. 28.
    Kiwi, J.; Gratzel, M., Optimization of conditions for photochemical water cleavage—aqueous Pt/TiO2 (anatase) dispersions under ultraviolet-light. J. Phys. Chem. 1984, 88 (7), 1302-1307.CrossRefGoogle Scholar
  29. 29.
    Abe, T.; Suzuki, E.; Nagoshi, K.; Miyashita, K.; Kaneko, M., Electron source in photoinduced hydrogen production on Pt-supported TiO2 particles. J. Phys. Chem. B 1999, 103 (7), 1119-1123.CrossRefGoogle Scholar
  30. 30.
    Meissner, D.; Memming, R.; Kastening, B.; Bahnemann, D., Fundamental problems of water splitting at cadmium-sulfide. Chem. Phys. Lett. 1986, 127 (5), 419-423.CrossRefGoogle Scholar
  31. 31.
    Williams, R., Becquerel photovoltaic effect in binary compounds. J. Chem. Phys. 1960, 32 (5), 1505-1514.CrossRefGoogle Scholar
  32. 32.
    Ellis, A. B.; Kaiser, S. W.; Bolts, J. M.; Wrighton, M. S., Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J. Am. Chem. Soc. 1977, 99 (9), 2839-2848.CrossRefGoogle Scholar
  33. 33.
    Abe, R.; Sayama, K.; Sugihara, H., Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 (-)/I. J. Phys. Chem. B 2005, 109 (33), 16052-16061.CrossRefGoogle Scholar
  34. 34.
    Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121 (49), 11459-11467.CrossRefGoogle Scholar
  35. 35.
    Kato, H.; Kobayashi, H.; Kudo, A., Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B 2002, 106 (48), 12441-12447.CrossRefGoogle Scholar
  36. 36.
    Kato, H.; Kudo, A., Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 2002, 106 (19), 5029-5034.CrossRefGoogle Scholar
  37. 37.
    Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S., Photocatalytic nanodiodes for visible-light photocatalysis. Ange. Chem. Inter. Ed. 2005, 44 (29), 4585-4589.CrossRefGoogle Scholar
  38. 38.
    Scaife, D. E., Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 1980, 25 (1), 41-54.CrossRefGoogle Scholar
  39. 39.
    Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K., GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127 (23), 8286-8287.CrossRefGoogle Scholar
  40. 40.
    Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H.; Domen, K., Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 2005, 109 (43), 20504-20510.CrossRefGoogle Scholar
  41. 41.
    Teramura, K.; Maeda, K.; Saito, T.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 2005, 109 (46), 21915-21921.CrossRefGoogle Scholar
  42. 42.
    Hirai, T.; Maeda, K.; Yoshida, M.; Kubota, J.; Ikeda, S.; Matsumura, M.; Domen, K., Origin of visible light absorption in GaN-Rich (Ga1-xZnx)(N1-xOx) photocatalysts. J. Phys. Chem. C 2007, 111 (51), 18853-18855.CrossRefGoogle Scholar
  43. 43.
    Sun, X.; Maeda, K.; Le Faucheur, M.; Teramura, K.; Domen, K., Preparation of (Ga1-xZnx) (N1-xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl. Catal. A-Gen. 2007, 327 (1), 114-121.CrossRefGoogle Scholar
  44. 44.
    Maeda, K.; Teramura, K.; Domen, K., Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light. J. Catal. 2008, 254 (2), 198-204.CrossRefGoogle Scholar
  45. 45.
    Daling Lu, T. T., Nobuo Saito,; Yasunobu Inoue, K. D., Photocatalyst releasing hydrogen from water. Nature 2006, 440 (16), 295.Google Scholar
  46. 46.
    Abe, R.; Higashi, M.; Domen, K., Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 2010, 132 (34), 11828-11829.CrossRefGoogle Scholar
  47. 47.
    Maeda, K.; Domen, K., Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem. Mater. 2010, 22 (3), 612-623.CrossRefGoogle Scholar
  48. 48.
    Maeda, K.; Higashi, M.; Siritanaratkul, B.; Abe, R.; Domen, K., SrNbO2N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band. J. Am. Chem. Soc. 2011, 133 (32), 12334-12337.CrossRefGoogle Scholar
  49. 49.
    Kasahara, A.; Nukumizu, K.; Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 2002, 106 (29), 6750-6753.CrossRefGoogle Scholar
  50. 50.
    Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation λ ≤ 500 nm). Chem. Commun. 2002, (16), 1698-1699.Google Scholar
  51. 51.
    Hara, M.; Chiba, E.; Ishikawa, A.; Takata, T.; Kondo, J. N.; Domen, K., Ta3N5 and TaON thin films on Ta foil: Surface composition and stability. J. Phys. Chem. B 2003, 107 (48), 13441-13445.CrossRefGoogle Scholar
  52. 52.
    Hara, M.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Domen, K., Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem. Commun. 2003, (24), 3000-3001.Google Scholar
  53. 53.
    Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124 (45), 13547-13553.Google Scholar
  54. 54.
    Abe, R.; Takata, T.; Sugihara, H.; Domen, K., Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 /I shuttle redox mediator. Chem. Commun. 2005, (30), 3829-3831.CrossRefGoogle Scholar
  55. 55.
    Sato, J.; Kobayashi, H.; Ikarashi, K.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J. Phys. Chem. B 2004, 108 (14), 4369-4375.CrossRefGoogle Scholar
  56. 56.
    Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conditions on activity. J. Phys. Chem. B 2003, 107 (31), 7965-7969.CrossRefGoogle Scholar
  57. 57.
    Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y., New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10 configuration. J. Phys. Chem. B 2001, 105 (26), 6061-6063.CrossRefGoogle Scholar
  58. 58.
    Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 2002, 106 (35), 9048-9053.CrossRefGoogle Scholar
  59. 59.
    Wei, S. H.; Zunger, A., Role of metal d-states in II–VI semiconductors. Phys. Review B 1988, 37 (15), 8958-8981.CrossRefGoogle Scholar
  60. 60.
    Maeda, K.; Teramura, K.; Lu, D. L.; Saito, N.; Inoue, Y.; Domen, K., Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem.-Int. Edit. 2006, 45 (46), 7806-7809.CrossRefGoogle Scholar
  61. 61.
    Maeda, K.; Lu, D.; Teramura, K.; Domen, K., Direct deposition of nanoparticulate rhodium-chromium mixed-oxides on a semiconductor powder by band-gap irradiation. J. Mater. Chem. 2008, 18 (30), 3539-3542.CrossRefGoogle Scholar
  62. 62.
    Zhang, L. W.; Baumanis, C.; Robben, L.; Kandiel, T.; Bahnemann, D., Bi2WO6 Inverse opals: Facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. Small 2011, 7 (19), 2714-2720.CrossRefGoogle Scholar
  63. 63.
    Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8 (1), 76-80.CrossRefGoogle Scholar
  64. 64.
    Kawai, T.; Sakata, T., Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286 (5772), 474-476.CrossRefGoogle Scholar
  65. 65.
    Domen, K.; Naito, S.; Onishi, T.; Tamaru, K., Photocatalytic hydrogen-production from a mixture of water and 2-propanol on some semiconductors. Chem. Lett. 1982, (4), 555-558.CrossRefGoogle Scholar
  66. 66.
    Kanno, H.; Yamamoto, Y.; Harada, H., TiO2-based photocatalysts prepared from titanium isopropoxide and aqueous-electrolyte solutions. Chem. Phys. Lett. 1985, 121 (3), 245-248.CrossRefGoogle Scholar
  67. 67.
    Cihlar, J.; Bartonickova, E., Low-temperature sol-gel synthesis of anatase nanoparticles modified by Au, Pd and Pt and activity of TiO2/Au, Pd, Pt photocatalysts in water splitting. J. Sol-Gel Sci. Technol. 65 (3), 430-442.Google Scholar
  68. 68.
    Tran, P. D.; Xi, L. F.; Batabyal, S. K.; Wong, L. H.; Barber, J.; Loo, J. S. C., Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Phys. Chem. Chem. Phys. 14 (33), 11596-11599.Google Scholar
  69. 69.
    Ma, B. J.; Kim, J. S.; Choi, C. H.; Woo, S. I., Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light. Inter. J. Hydrogen Energy 38 (9), 3582-3587.Google Scholar
  70. 70.
    Lee, S. G.; Lee, S.; Lee, H. I., Photocatalytic production of hydrogen from aqueous solution containing CN as a hole scavenger. Appl. Catal. a-Gen. 2001, 207 (1-2), 173-181.CrossRefGoogle Scholar
  71. 71.
    Buhler, N.; Meier, K.; Reber, J. F., Photochemical hydrogen-production with cadmium-sulfide suspensions. J. Phys. Chem. 1984, 88 (15), 3261-3268.CrossRefGoogle Scholar
  72. 72.
    Wang, Y. B.; Wang, Y. S.; Xu, R., Photochemical deposition of Pt on CdS for H2 evolution from water: Markedly enhanced activity by controlling Pt reduction environment. J. Phys. Chem. C 117 (2), 783-790.Google Scholar
  73. 73.
    Yao, W. F.; Song, X. L.; Huang, C. P.; Xu, Q. J.; Wu, Q., Enhancing solar hydrogen production via modified photochemical treatment of Pt/CdS photocatalyst. Catal. Today 199, 42-47.Google Scholar
  74. 74.
    Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chem. Mater. 2008, 20 (1), 110-117.CrossRefGoogle Scholar
  75. 75.
    Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C., Enhancement of photocatalytic H2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130 (23), 7176-7177.CrossRefGoogle Scholar
  76. 76.
    Frame, F. A.; Osterloh, F. E., CdSe-MoS2: A Quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114 (23), 10628-10633.Google Scholar
  77. 77.
    Bang, J. U.; Lee, S. J.; Jang, J. S.; Choi, W.; Song, H., Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation. J. Phys. Chem. Lett. 3 (24), 3781-3785.Google Scholar
  78. 78.
    Holmes, M. A.; Townsend, T. K.; Osterloh, F. E., Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48 (3), 371-373.CrossRefGoogle Scholar
  79. 79.
    Grzyll, L. R.; Thomas, J. J.; Barile, R. G., Photoelectrochemical conversion of hydrogen-sulfide to hydrogen using artificial-light and solar-radiation. Inter. J. Hydrogen Energy 1989, 14 (9), 647-651.CrossRefGoogle Scholar
  80. 80.
    Ma, G. J.; Yan, H. J.; Shi, J. Y.; Zong, X.; Lei, Z. B.; Li, C., Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J. Catal. 2008, 260 (1), 134-140.CrossRefGoogle Scholar
  81. 81.
    Jang, J. S.; Kim, H. G.; Borse, P. H.; Lee, J. S., Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation. Inter. J. Hydrogen Energy 2007, 32 (18), 4786-4791.CrossRefGoogle Scholar
  82. 82.
    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110 (11), 6503-6570.CrossRefGoogle Scholar
  83. 83.
    Kawai, T.; Sakata, T., Photocatalytic hydrogen-production from liquid methanol and water. J. Chem. Soc.-Chem. Commun. 1980, (15), 694-695.CrossRefGoogle Scholar
  84. 84.
    Lin, W. C.; Yang, W. D.; Huang, I. L.; Wu, T. S.; Chung, Z. J., Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels 2009, 23, 2192-2196.CrossRefGoogle Scholar
  85. 85.
    Chen, J.; Ollis, D. F.; Rulkens, W. H.; Bruning, H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): Photocatalytic activity and pH influence. Water Research 1999, 33 (3), 661-668.CrossRefGoogle Scholar
  86. 86.
    Chen, J.; Ollis, D. F.; Rulkens, W. H.; Bruning, H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanisms. Water Res. 1999, 33 (3), 669-676.CrossRefGoogle Scholar
  87. 87.
    Wang, C. Y.; Rabani, J.; Bahnemann, D. W.; Dohrmann, J. K., Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J. Photochem. Photobiol. A-Chem. 2002, 148 (1-3), 169-176.CrossRefGoogle Scholar
  88. 88.
    Wang, C. Y.; Pagel, R.; Bahnemann, D. W.; Dohrmann, J. K., Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: Effect of intermittent illumination, platinization, and deoxygenation. J. Phys. Chem. B 2004, 108 (37), 14082-14092.CrossRefGoogle Scholar
  89. 89.
    Wang, C. Y.; Groenzin, H.; Shultz, M. J., Direct observation of competitive adsorption between methanol and water on TiO2: An in situ sum-frequency generation study. J. Am. Chem. Soc. 2004, 126 (26), 8094-8095.CrossRefGoogle Scholar
  90. 90.
    Sun, L. Z.; Bolton, J. R., Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J. Phys. Chem. 1996, 100 (10), 4127-4134.CrossRefGoogle Scholar
  91. 91.
    Hykaway, N.; Sears, W. M.; Morisaki, H.; Morrison, S. R., Current-doubling reactions on titanium-dioxide photoanodes. J. Phys. Chem. 1986, 90 (25), 6663-6667.CrossRefGoogle Scholar
  92. 92.
    Nogami, G.; Kennedy, J. H., Investigation of current doubling mechanism of organic-compounds by the rotating-ring disk electrode technique. J. Electrochem. Soc. 1989, 136 (9), 2583-2588.CrossRefGoogle Scholar
  93. 93.
    Villarreal, T. L.; Gomez, R.; Neumann-Spallart, M.; Alonso-Vante, N.; Salvador, P., Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination. J. Phys. Chem. B 2004, 108 (39), 15172-15181.CrossRefGoogle Scholar
  94. 94.
    Asmus, K. D.; Mockel, H.; Henglein, A., Pulse radiolytic study of Site of OH radical attack on aliphatic alcohols in aqueous-solution. J. Phys. Chem. 1973, 77 (10), 1218-1221.Google Scholar
  95. 95.
    Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M., Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: Evaluation of the reaction rates and yields. J. Am. Chem. Soc. 2006, 128 (2), 416-417.CrossRefGoogle Scholar
  96. 96.
    Weber, M. F.; Dignam, M. J., Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 1984, 131 (6), 1258-1265.CrossRefGoogle Scholar
  97. 97.
    Bahnemann, D.; Henglein, A.; Lilie, J.; Spanhel, L., Flash-photolysis observation of the absorption-spectra of trapped positive holes and electrons in colloidal TiO2. J. Phys. Chem. 1984, 88 (4), 709-711.CrossRefGoogle Scholar
  98. 98.
    Imanishi, A.; Tsuji, E.; Nakato, Y., Dependence of the work function of TiO2 (Rutile) on crystal faces, studied by a scanning auger microprobe. J. Phys. Chem. C 2007, 111 (5), 2128-2132.CrossRefGoogle Scholar
  99. 99.
    Eastman, D. E., Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B 1970, 2 (1), 1-&.Google Scholar
  100. 100.
    Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216 (1-2), 505-516.CrossRefGoogle Scholar
  101. 101.
    Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M., Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem. Phys. Lett.. 2001, 336 (5-6), 424-430.CrossRefGoogle Scholar
  102. 102.
    Bahnemann, D.; Henglein, A.; Spanhel, L., Detection of the intermediates of colloidal TiO2-catalyzed photoreactions. Faraday Discussions 1984, 78, 151-163.CrossRefGoogle Scholar
  103. 103.
    Erdey-Gruz, T.; Volmer, M., Zur theorie der wasserstoffüberspannung. Z. Phys. Chem. 1930, 150, 203-213.Google Scholar
  104. 104.
    Heyrovsky, J., Eine Theorie der Überspannung. Rec. Trav. Chim. Pays-Bas 1925, 44, 499-513.Google Scholar
  105. 105.
    Tafel, J., Über die Polarisation bei kathodischer Wasserstoffentwicklung. Z. Phys. Chem. 1905, 50, 641-712.Google Scholar
  106. 106.
    Kasarevic-Popovic, Z.; Behar, D.; Rabani, J., Role of excess electrons in TiO2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions. J. Phys. Chem. B 2004, 108 (52), 20291-20295.CrossRefGoogle Scholar
  107. 107.
    Mizukoshi, Y.; Makise, Y.; Shuto, T.; Hu, J. W.; Tominaga, A.; Shironita, S.; Tanabe, S., Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason. Sonochem. 2007, 14 (3), 387-392.CrossRefGoogle Scholar
  108. 108.
    Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M., Photoassisted hydrogen-production from a water-ethanol solution—a Comparison of activities of Au-TiO2 and Pt-TiO2. J. Photochem. Photobiol. A-Chem. 1995, 89 (2), 177-189.Google Scholar
  109. 109.
    Jang, J. S.; Ji, S. M.; Bae, S. W.; Son, H. C.; Lee, J. S., Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J. Photochem. Photobiol. A-Chem. 2007, 188 (1), 112-119.CrossRefGoogle Scholar
  110. 110.
    Behar, D.; Rabani, J., Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; Steady state and pulse radiolysis study. J. Phys. Chem. B 2006, 110 (17), 8750-8755.CrossRefGoogle Scholar
  111. 111.
    Fang, J.; Cao, S. W.; Wang, Z.; Shahjamali, M. M.; Loo, S. C. J.; Barber, J.; Xue, C., Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Inter. J. Hydrogen Energy 37 (23), 17853-17861.Google Scholar
  112. 112.
    Ingram, D. B.; Linic, S., Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133 (14), 5202-5205.Google Scholar
  113. 113.
    Saadi, S.; Bouguelia, A.; Derbal, A.; Trari, M., Hydrogen photoproduction over new catalyst CuLaO2. J. Photochem. Photobiol. A-Chem. 2007, 187 (1), 97-104.CrossRefGoogle Scholar
  114. 114.
    Peng, T. Y.; Li, K.; Zeng, P.; Zhang, Q. G.; Zhang, X. G., Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 116 (43), 22720-22726.Google Scholar
  115. 115.
    Boudjemaa, A.; Bouarab, R.; Saadi, S.; Bouguelia, A.; Trari, M., Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2 solutions (X2− = S2− and SO3 2−). Appl. Energy 2009, 86 (7-8), 1080-1086.Google Scholar
  116. 116.
    Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R., Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2 production performance. Nano Lett. 12 (9), 4584-4589.Google Scholar
  117. 117.
    Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126 (41), 13406-13413.CrossRefGoogle Scholar
  118. 118.
    Chen, S. Y.; Wang, L. W., Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 2012, 24 (18), 3659-3666.CrossRefGoogle Scholar
  119. 119.
    Minoura, H.; Tsuiki, M., Anodic reactions of several reducing agents on illuminated cadmium-sulfide electrode. Electrochim. Acta 1978, 23 (12), 1377-1382.CrossRefGoogle Scholar
  120. 120.
    Wardman, P., Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. J. Phys. Chem. Ref. Data 1989, 18 (4), 1637-1755.CrossRefGoogle Scholar
  121. 121.
    Watanabe, T.; Fujishim.A; Honda, K. I., Potential variation at semiconductor-electrolyte interface through a change in ph of solution. Chem. Lett. 1974, (8), 897-900.CrossRefGoogle Scholar
  122. 122.
    Inoue, T.; Watanabe, T.; Fujishima, A.; Honda, K., investigation of CdS photoanode reaction in the electrolyte solution containing sulfide ion. Bull. Chem. Soc. Jpn 1979, 52 (5), 1243-1250.Google Scholar
  123. 123.
    Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266 (2), 165-168.CrossRefGoogle Scholar
  124. 124.
    Kambe, S.; Fujii, M.; Kawai, T.; Kawai, S.; Nakahara, F., Photocatalytic hydrogen-production with Cd(S, Se) solid-solution particles—determining factors for the highly efficient photocatalyst. Chem. Phys. Lett. 1984, 109 (1), 105-109.Google Scholar
  125. 125.
    Frame, F. A.; Carroll, E. C.; Larsen, D. S.; Sarahan, M.; Browning, N. D.; Osterloh, F. E., First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem. Commun. 2008, (19), 2206-2208.CrossRefGoogle Scholar
  126. 126.
    Harris, C.; Kamat, P. V., Photocatalytic events of CdSe quantum dots in confined media. electrodic behavior of coupled platinum nanoparticles. Acs Nano 2010, 4 (12), 7321-7330.CrossRefGoogle Scholar
  127. 127.
    Zhou, Z. H.; Shi, J. W.; Wu, P.; Li, M. T.; Guo, L. J., First-principles study on absolute band edge positions for II-VI semiconductors at (110) surface. Chem. Phys. Lett. 513 (1-3), 72-76.Google Scholar
  128. 128.
    Gerischer, H., The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 1990, 35 (11-12), 1677-1699.CrossRefGoogle Scholar
  129. 129.
    Alonso-Tellez, A.; Robert, D.; Keller, N.; Keller, V., A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Appl. Catal. B-Environ. 2012, 115, 209-218.Google Scholar
  130. 130.
    Portela, R.; Suarez, S.; Rasmussen, S. B.; Arconada, N.; Castro, Y.; Duran, A.; Avila, P.; Coronado, J. M.; Sanchez, B., Photocatalytic-based strategies for H2S elimination. Catal. Today 2010, 151 (1-2), 64-70.CrossRefGoogle Scholar
  131. 131.
    Canela, M. C.; Alberici, R. M.; Jardim, W. F., GaS-phase destruction of H2S using TiO2/UV-VIS. J. Photochem. Photobiol. A-Chem. 1998, 112 (1), 73-80.CrossRefGoogle Scholar
  132. 132.
    Tambwekar, S. V.; Subrahmanyam, M., Photocatalytic generation of hydrogen from hydrogen sulfide: An energy bargain. Inter. J. Hydrogen Energy 1997, 22 (10-11), 959-965.CrossRefGoogle Scholar
  133. 133.
    Boragarello E, K. K., Gratzel M, Visible light induced generation of hydrogen from hydrogen sulfide in cadmium sulfide dispersions with hole transfer catalysis by ruthenium(IV) oxide. Helv Chim Acta 1982, 65, 243-248.CrossRefGoogle Scholar
  134. 134.
    Szynkarczuk, J.; Komorowski, P. G.; Donini, J. C., Redox reactions of hydrosulfide ions on the platinum-electrode. 1. the presence of intermediate polysulfide ions and sulfur layers. Electrochim. Acta 1994, 39 (15), 2285-2289.CrossRefGoogle Scholar
  135. 135.
    Bard, A. J.; Parsons, R.; Jordan, J., Standard potentials in aqueous solution. New York and Basel, 1985.Google Scholar
  136. 136.
    Hara, K.; Sayama, K.; Arakawa, H., Photocatalytic hydrogen and oxygen formation over SiO2-supported RuS2 in the presence of sacrificial donor and acceptor. Appl. Catal. A-Gen. 1999, 189 (1), 127-137.CrossRefGoogle Scholar
  137. 137.
    Tang, J. W.; Ye, J. H., Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J. Mater. Chem. 2005, 15 (39), 4246-4251.CrossRefGoogle Scholar
  138. 138.
    Ohmori, T.; Takahashi, H.; Mametsuka, H.; Suzuki, E., Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent. Phys. Chem. Chem. Phys. 2000, 2 (15), 3519-3522.CrossRefGoogle Scholar
  139. 139.
    Kim, W.; Tachikawa, T.; Majima, T.; Choi, W., Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: Enhanced activity for H2 production and Dechlorination of CCl4. J. Phys. Chem. C 2009, 113 (24), 10603-10609.CrossRefGoogle Scholar
  140. 140.
    Minero, C.; Piccinini, P.; Calza, P.; Pelizzetti, E., Photocatalytic reduction/oxidation processes occurring at the carbon and nitrogen of tetranitromethane. New J. Chem. 1996, 20 (11), 1159-1164.Google Scholar
  141. 141.
    Nadtochenko, V.; Denisov, N.; Gorenberg, A.; Kozlov, Y.; Chubukov, P.; Rengifo, J. A.; Pulgarin, C.; Kiwi, J., Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Appl. Catal. B-Environ. 2009, 91 (1-2), 460-469.CrossRefGoogle Scholar
  142. 142.
    Ferry, J. L.; Glaze, W. H., Photocatalytic reduction of nitroorganics over illuminated titanium dioxide: Electron transfer between excited-state TiO2 and nitroaromatics. J. Phys. Chem. B 1998, 102 (12), 2239-2244.CrossRefGoogle Scholar
  143. 143.
    Kandiel, T. A.; Dillert, R.; Bahnemann, D. W., Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt-polypyrrole nanocomposites. Photochem. Photobiol. Sci. 2009, 8 (5), 683-690.CrossRefGoogle Scholar
  144. 144.
    Deki, S.; Nishikawa, H.; Mizuhata, M., Fabrication of Pt nanoparticles-polypyrrole composite for electrocatalyst. Electrochem. 2004, 72 (6), 415-417.Google Scholar
  145. 145.
    Frank, A. J.; Honda, K., Polymer-modified electrodes, catalysis and water-splitting reactions. J. Photochem. 1985, 29 (1-2), 195-204.CrossRefGoogle Scholar
  146. 146.
    Cooper, G.; Noufi, R.; Frank, A. J.; Nozik, A. J., Oxygen evolution on tantalum polypyrrole platinum anodes. Nature 1982, 295 (5850), 578-580.CrossRefGoogle Scholar
  147. 147.
    Kandiel, T. A.; Dillert, R.; Robben, L.; Bahnemann, D. W., Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal. Today 2011, 161 (1), 196-201.CrossRefGoogle Scholar
  148. 148.
    Kandiel, T. A.; Ismail, A. A.; Bahnemann, D. W., Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. Phys. Chem. Chem. Phys. 2011, 13 (45), 20155-20161.CrossRefGoogle Scholar
  149. 149.
    Karakitsou, K. E.; Verykios, X. E., Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 1993, 97 (6), 1184-1189.Google Scholar
  150. 150.
    Junwang Tang, H. Q., and Jinhua Ye, Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. Chem. Mater. 2007, 19, 116-122 2007.Google Scholar
  151. 151.
    Jitputti, J.; Pavasupree, S.; Suzuki, Y.; Yoshikawa, S., Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J. Sol. State Chem. 2007, 180 (5), 1743-1749.CrossRefGoogle Scholar
  152. 152.
    Ekambaram, S., Photoproduction of clean H2 or O2 from water using oxide semiconductors in presence of sacrificial reagent. J. All. Comp. 2008, 448 (1-2), 238-245.CrossRefGoogle Scholar
  153. 153.
    Jitputti, J.; Suzuki, Y.; Yoshikawa, S., Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal. Commun. 2008, 9 (6), 1265-1271.CrossRefGoogle Scholar
  154. 154.
    Rosseler, O.; Shankar, M. V.; Du, M. K. L.; Schmidlin, L.; Keller, N.; Keller, V., Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 2010, 269 (1), 179-190.CrossRefGoogle Scholar
  155. 155.
    Highfield, J. G.; Chen, M. H.; Nguyen, P. T.; Chen, Z., Mechanistic investigations of photo-driven processes over TiO2 by in-situ DRIFTS-MS: Part 1. Platinization and methanol reforming. Energy Environ. Sci. 2009, 2 (9), 991-1002.CrossRefGoogle Scholar
  156. 156.
    Kandiel, T. A.; Ivanova, I.; Bahnemann, D. W., Long-term investigation of the photocatalytic hydrogen production on platinized TiO2: an isotopic study. Energy Environ. Sci. 2014, 7, 1420-1425.CrossRefGoogle Scholar
  157. 157.
    Yasui, S.; Itoh, K.; Ohno, A.; Tokitoh, N., Kinetic deuterium isotope effect in single-electron transfer occurring from tributylphosphine to viologens. Chem. Lett. 2001, (10), 1056-1057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jenny Schneider
    • 1
  • Tarek A. Kandiel
    • 2
  • Detlef W. Bahnemann
    • 1
  1. 1.Photocatalysis and Nanotechnology Research UnitInstitute of Technical Chemistry, Leibniz University of HannoverHannoverGermany
  2. 2.Chemistry Department, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations