Combinatorial and Additive Number Theory pp 243-255 | Cite as
Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-Non-Wilson Primes 2, 3, 14771
- 853 Downloads
Abstract
The Fermat quotient \(q_{p}(a):= (a^{p-1} - 1)/p\), for prime p∤ a, and the Wilson quotient \(w_{p}:= ((p - 1)! + 1)/p\) are integers. If p∣w p , then p is a Wilson prime. For odd p, Lerch proved that \((\sum\nolimits_{a=1}^{p-1}q_{p}(a) - w_{p})/p\) is also an integer; we call it the Lerch quotient ℓ p . If p∣ℓ p we say p is a Lerch prime. A simple Bernoulli number test for Lerch primes is proven. There are four Lerch primes 3, 103, 839, 2237 up to 3 × 106; we relate them to the known Wilson primes 5, 13, 563. Generalizations are suggested. Next, if p is a non-Wilson prime, then \(q_{p}(w_{p})\) is an integer that we call the Fermat-Wilson quotient of p. The GCD of all \(q_{p}(w_{p})\) is shown to be 24. If \(p\mid q_{p}(a)\), then p is a Wieferich prime base a; we give a survey of them. Taking a = w p , if \(p\mid q_{p}(w_{p})\) we say p is a Wieferich-non-Wilson prime. There are three up to 107, namely, 2, 3, 14771. Several open problems are discussed.
Keywords
Fermat quotient Wilson quotient Wilson prime Lerch’s formula Bernoulli number Faulhaber’s formula von Staudt-Clausen theorem Glaisher’s congruence E. Lehmer’s test Mathematica Wieferich prime abc-conjectureMSC 2010:
11A41 (primary) 11B68 (secondary)Notes
Acknowledgements
I am grateful to Wadim Zudilin for suggestions on the test, for a simplification in computing WW primes, and for verifying that there are no new ones up to 30000, using PARI/GP [24]. I thank Marek Wolf for computing Lerch primes and Michael Mossinghoff for computing WW primes.
References
- 1.T. Agoh, K. Dilcher, L. Skula, Wilson quotients for composite moduli. Math. Comp. 67, 843–861 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.J.H. Conway, R.K. Guy, The Book of Numbers (Springer, New York, 1996)CrossRefzbMATHGoogle Scholar
- 3.J.B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson theorem. Integers 8, article A39 (2008)Google Scholar
- 4.E. Costa, R. Gerbicz, D. Harvey, A search for Wilson primes (2012, preprint); available at http://arxiv.org/abs/1209.3436
- 5.R. Crandall, K. Dilcher, C. Pomerance, A search for Wieferich and Wilson primes. Math. Comp. 66, 433–449 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.P.J. Davis, Are there coincidences in mathematics? Am. Math. Mon. 88, 311–320 (1981)CrossRefzbMATHGoogle Scholar
- 7.L.E. Dickson, History of the Theory of Numbers, vol. 1. (Carnegie Institution of Washington, Washington, D.C. 1919); reprinted by (Dover, Mineola, NY 2005)Google Scholar
- 8.K. Dilcher, A bibliography of Bernoulli numbers (2011); available at http://www.mscs.dal.ca/~dilcher/bernoulli.html
- 9.J.B. Dobson, On Lerch’s formula for the Fermat quotient (2012, preprint); available at http://arxiv.org/abs/1103.3907
- 10.F.G. Dorais, D.W. Klyve, A Wieferich prime search up to 6. 7 × 1015. J. Integer Seq. 14, Article 11.9.2 (2011); available at http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Klyve/klyve3.html
- 11.F. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhaengen und durch gewisse lineare Funktional-Gleichungen definiert werden, Verhandlungen der Koenigl. Preuss. Akademie der Wiss. zu Berlin 36–42 (1850); reprinted in vol. 2 (Mathematische Werke, Chelsea, New York 1975) pp. 705–711Google Scholar
- 12.J.W.L. Glaisher, A congruence theorem relating to Eulerian numbers and other coefficients. Proc. Lond. Math. Soc. 32, 171–198 (1900)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.GMP: The GNU Multiple Precision Arithmetic Library (2011); available at http://gmplib.org/
- 14.K. Goldberg, A table of Wilson quotients and the third Wilson prime. J. Lond. Math. Soc. 28, 252–256 (1953)CrossRefzbMATHGoogle Scholar
- 15.R.K. Guy, The strong law of small numbers. Am. Math. Mon. 95, 697–712 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.R.K. Guy, Unsolved Problems in Number Theory, 3rd edn. (Springer, New York 2004)CrossRefzbMATHGoogle Scholar
- 17.G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th edn. (Oxford University Press, Oxford 1989)Google Scholar
- 18.Klaster Instytutu Fizyki Teoretycznej UWr (2012); http://zero.ift.uni.wroc.pl/
- 19.D. Knuth, Johann Faulhaber and sums of powers. Math. Comp. 61, 277–294 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.E. Lehmer, A note on Wilson’s quotient. Am. Math. Mon. 44, 237–238 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.M. Lerch, Zur Theorie des Fermatschen Quotienten \(\frac{a^{p-1}-1} {p} = q(a)\). Math. Ann. 60, 471–490 (1905)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.D. MacHale, Comic Sections: The Book of Mathematical Jokes, Humour, Wit and Wisdom (Boole Press, Dublin 1993)Google Scholar
- 23.P.L. Montgomery, New solutions of \(a^{\,p-1} \equiv 1\pmod p^{\,2}\). Math. Comp. 61, 361–363 (1993)MathSciNetzbMATHGoogle Scholar
- 24.PARI/GP (2011); available at http://pari.math.u-bordeaux.fr/
- 25.P. Ribenboim, 1093. Math. Intelligencer 5, 28–34 (1983)Google Scholar
- 26.P. Ribenboim, The Book of Prime Number Records, 2nd. edn. (Springer, New York, 1989)Google Scholar
- 27.P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (Springer, New York, 2000)zbMATHGoogle Scholar
- 28.J.H. Silverman, Wieferich’s criterion and the abc-conjecture. J. Number Theor. 30(2), 226–237 (1988)CrossRefzbMATHGoogle Scholar
- 29.N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (2011); published at http://oeis.org/
- 30.J. Sondow, K. MacMillan, Reducing the Erdős-Moser equation \(1^{n} + 2^{n} + \cdots + k^{n} = (k + 1)^{n}\) modulo k and k 2. Integers 11, article A34 (2011); expanded version available at http://arxiv.org/abs/1011.2154v1
- 31.D. Wells, The Penguin Dictionary of Curious and Interesting Numbers (Penguin Books, London, 1986)Google Scholar
- 32.Wikipedia: Wieferich prime (2012); http://en.wikipedia.org/wiki/Wieferich_prime