The Plünnecke–Ruzsa Inequality: An Overview

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 101)

Abstract

In this expository article we present an overview of the Plünnecke–Ruzsa inequality: the known proofs, some of its well-known applications and possible extensions. We begin with the graph-theoretic setting in which Plünnecke and later Ruzsa worked in. The more purely combinatorial proofs of the inequality are subsequently presented. In the concluding sections we discuss the sharpness of the various results presented thus far and possible extensions of the inequality to the non-commutative setting.

Keywords

Sumsets Plünnecke–Ruzsa inequality 

MSC 2010:

11B30 

References

  1. 1.
    P. Balister, B. Bollobás, Projections, entropy and sumsets. Combinatorica 32, 125–141 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14, 27–57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    W.T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11, 465–588 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    W.T. Gowers, A new way of proving sumset estimates (2011), http://gowers.wordpress.com/2011/02/10/a-new-way-of-proving-sumset-estimates/
  5. 5.
    A. Granville, An introduction to additive combinatorics, in Additive Combinatorics, ed. by A. Granville, M.B. Nathanson, J. Solymosi. CRM Proceedings and Lecture Notes (American Mathematical Society, New York, 2007), pp. 1–27Google Scholar
  6. 6.
    B.J. Green, T. Tao, An inverse theorem for the Gowers U 3(G) norm. Proc. Edin. Math. Soc. (2) 51(1), 75–153 (2008)Google Scholar
  7. 7.
    K. Gyarmati, M. Maltolcsi, I.Z. Ruzsa, Plünnecke’s inequality for different summands, in Building Bridges: Between Mathematics and Computer Science, ed. by M. Grötschel, G.O.H. Katona. Bolyai Society Mathematical Studies, vol. 19 (Springer, New York, 2008), pp. 309–320Google Scholar
  8. 8.
    K. Gyarmati, M. Maltolcsi, I.Z. Ruzsa, A superadditivity and submultiplicativity property for cardinalities of sumsets. Combinatorica 30(2), 163–174 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    H.A. Helfgott, Growth and generation in \(SL_{2}(\mathbb{Z}/p\mathbb{Z})\). Ann. Math. 167, 601–623 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Madiman, A.W. Marcus, P. Tetali, Entropy and set cardinality inequalities for partition-determined functions, with applications to sumsets. Random Structures Algorithms 40, 399–424 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets (Springer, New York, 1996)CrossRefMATHGoogle Scholar
  12. 12.
    G. Petridis, New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica 32, 721–733 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    G. Petridis, Plünnecke’s inequality. Combin. Probab. Comput. 20, 921–938 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    G. Petridis, Upper bounds on the cardinality of higher sumsets. Acta Arith. 158, 299–319 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    H. Plünnecke, Eine zahlentheoretische anwendung der graphtheorie. J. Reine Angew. Math. 243, 171–183 (1970)MathSciNetMATHGoogle Scholar
  16. 16.
    C. Reiher, Comments on ‘A new way of proving sumset estimates’ by Gowers, W.T. (2011), http://gowers.wordpress.com/2011/02/10/a-new-way-of-proving-sumset-estimates/
  17. 17.
    I.Z. Ruzsa, On the cardinality of A + A and AA, in Combinatorics (Keszthely 1976), ed. by A. Hajnal, V.T. Sós. Coll. Math. Soc. J. Bolyai, vol. 18 (North Holland, Amsterdam, 1978), pp. 933–938Google Scholar
  18. 18.
    I.Z. Ruzsa, An application of graph theory to additive number theory. Scientia Ser. A 3, 97–109 (1989)MathSciNetMATHGoogle Scholar
  19. 19.
    I.Z. Ruzsa, Addendum to: an application of graph theory to additive number theory. Scientia Ser. A 4, 93–94 (1990/1991)Google Scholar
  20. 20.
    I.Z. Ruzsa, Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65(4), 379–388 (1994)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    I.Z. Ruzsa, Cardinality questions about sumsets, in Additive Combinatorics, ed. by A. Granville, M.B. Nathanson, J. Solymosi. CRM Proceedings and Lecture Notes (American Mathematical Society, New York, 2007), pp. 195–205Google Scholar
  22. 22.
    I.Z. Ruzsa, Sumsets and structure, in Combinatorial Number Theory and Additive Group Theory (Springer, New York, 2009)Google Scholar
  23. 23.
    I.Z. Ruzsa, Towards a noncommutative Plünnecke-type inequality, in An Irregular Mind Szemeredi is 70, ed. by I. Bárány, J. Solymosi. Bolyai Society Mathematical Studies, vol. 21 (Springer, New York, 2010), pp. 591–605Google Scholar
  24. 24.
    T.W. Sanders, Green’s sumset problem at density one half. Acta Arith. 146(1), 91–101 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    T. Tao, Product set estimates for non-commutative groups. Combinatorica 28(5), 574–594 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Tao, V.H. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of RochesterNYUSA

Personalised recommendations