Amorphous Solid Dispersion Using Supercritical Fluid Technology

  • Pratik Sheth
  • Harpreet Sandhu
Part of the Advances in Delivery Science and Technology book series (ADST)


Use of supercritical fluid (SCF) processing technologies in the pharmaceutical industry has seen remarkable growth as an alternate technology for the preparation of micro- and nano-sized particles. Carbon dioxide, having low critical temperature (31.2 °C) and pressure (73.8 bar or 7.4 Mpa) and being nonflammable, nontoxic, and environmentally safe, is the choice of SCF for processing of pharmaceuticals including heat-sensitive materials such as biologicals. Depending on how SCF is used in the technology, a number of variations have emerged to meet the needs of the compound and the product design. For example, SCF can act either as a solvent, an antisolvent, or as a solute. The superior solvent characteristics of SCF stem from its physical properties where it behaves like a gas and liquid at the same time. The high diffusivity and low viscosity coupled with low surface tension helps in solubilizing the organic compounds. SCF technologies can be grouped into several categories based on the particle growth mechanism and their collection environment. Rapid expansion of supercritical solutions, gas antisolvent (GAS) precipitation, supercritical antisolvent (SAS) precipitation, precipitation with compressed fluid antisolvent (PCA), solution-enhanced dispersion by SCF (SEDS), and precipitation from gas-saturated solutions (PGSS) are the main variants of SCF technologies. These techniques have successfully produced micro- and nanoparticles as well as amorphous solid dispersions (ASDs). In addition to being a stand-alone processing technology, SCF has been frequently used as a processing aid in the manufacture of the ASD, for instance, as temporary plasticizer in the melt extrusion process to reduce the processing temperature, melt viscosity, or to impart porosity. The premise of this chapter is to examine the potential of SCF in producing amorphous dispersions and to identify the opportunities for future development.


Supercritical fluid RESS SAS ASES SEDS PGSS Nanoparticles Carbon dioxide Amorphous particles Temporary plasticizer 


  1. Ayad MH, Bonnet B, Quinton J, Leigh M, Poli SM (2013) Amorphous solid dispersion successfully improved oral exposure of ADX71943 in support of toxicology studies. Drug Dev Ind Pharm 39(9):1300–1305PubMedCrossRefGoogle Scholar
  2. Badens E, Majerik V, Horváth G, Szokonya L, Bosc N, Teillaud E, Charbit G (2009) Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. Int J Pharm 377(1–2):25–34PubMedCrossRefGoogle Scholar
  3. Bartle KD (1988) Theory and principles of supercritical fluid chromatography. Supercritical fluid chromatography. The Royal Society of Chemistry, S. R. M. London, pp 1–28Google Scholar
  4. Beach S, Latham D, Sidgwick C, Hanna M, York P (1999) Control of the physical form of salmeterol xinafoate. Org Process Res Dev 3(5):370–376CrossRefGoogle Scholar
  5. Bikiaris DN (2011) Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 8(11):1501–1519PubMedCrossRefGoogle Scholar
  6. Chen AZ, Li Y, Chau FT, Lau TY, Hu JY, Zhao Z, Mok DK (2009) Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process. Acta Biomater 5(8):2913–2919PubMedCrossRefGoogle Scholar
  7. Chiou WL, Riegelman S (1971) Increased dissolution rates of water-insoluble cardiac glycosides and steroids via solid dispersions in polyethylene glycol 6000. J Pharm Sci 60(10):1569–1571PubMedCrossRefGoogle Scholar
  8. Foster NR, Fariba D, Charoenchaitrakool Kiang M, Warwick B (2003) Application of dense gas techniques for the production of fine particles. AAPS PharmSciTech 5(2):32–38CrossRefGoogle Scholar
  9. Gadermann MKS, Al-Marzouqi A, Signorell R (2009) Formation of naproxen/polylactic acid nanoparticles by pulsed rapid expansion of supercritical solutions. Phys Chem Chem Phys 11:7861–7868PubMedCrossRefGoogle Scholar
  10. Ghaderi R, Artursson P, Carlfors J (2000) A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids. Eur J Pharm Sci 10(1):1–9PubMedCrossRefGoogle Scholar
  11. Hanna M, York P (1998) Method and apparatus for the formation of particles, Google PatentsGoogle Scholar
  12. Jung J, Clavier JY, Perrut M (2003) Gram to kilogram scale up of supercritical anti-solvent process. Proceedings of the 6th international symposium on supercritical fluids, Versailles, FranceGoogle Scholar
  13. Kalogiannis CG, Pavlidou E, Panayiotou CG (2005) Production of amoxicillin microparticles by supercritical antisolvent precipitation. Ind Eng Chem Res 44(24):9339–9346CrossRefGoogle Scholar
  14. Kerc J, Srcic S, Kofler B (1998) Alternative solvent-free preparation methods for felodipine surface solid dispersions. Drug Dev Ind Pharm 24(4):359–363PubMedCrossRefGoogle Scholar
  15. Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RH, Hwang SJ (2008) Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 69(2):454–465PubMedCrossRefGoogle Scholar
  16. Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7(4–5):353–361CrossRefGoogle Scholar
  17. Lee TW, Boersen NA, Hui HW, Chow SF, Wan KY, Chow AH (2014) Delivery of poorly soluble compounds by amorphous solid dispersions. Curr Pharm Des 20(3):303–324PubMedCrossRefGoogle Scholar
  18. Lobo JM, Schiavone H, Palakodaty S, York P, Clark A, Tzannis ST (2005) SCF-engineered powders for delivery of budesonide from passive DPI devices. J Pharm Sci 94(10):2276–2288PubMedCrossRefGoogle Scholar
  19. Muhrer G, Meier U, Fusaro F, Albano S, Mazzotti M (2006) Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug-polymer solid dispersions. Int J Pharm 308(1–2):69–83PubMedCrossRefGoogle Scholar
  20. Pathak P, Meziani MJ, Desai T, Sun YP (2004) Nanosizing drug particles in supercritical fluid processing. J Am Chem Soc 126(35):10842–10843PubMedCrossRefGoogle Scholar
  21. Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Res 39(12):4531–4535CrossRefGoogle Scholar
  22. Poling BE, Prausnitz JM, John Paul OC, Reid RC (2001) The properties of gases and liquids. McGraw-Hill, New YorkGoogle Scholar
  23. Reverchon E, De Marco I, Della Porta G (2002) Rifampicin microparticles production by supercritical antisolvent precipitation. Int J Pharm 243(1–2):83–91PubMedCrossRefGoogle Scholar
  24. Rodrigues M, Peiriço N, Matos H, Gomes de Azevedo E, Lobato MR, Almeida AJ (2004) Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids 29(1–2):175–184CrossRefGoogle Scholar
  25. Senčar-Božič P, Srčič S, Knez Z, Kerč J (1997) Improvement of nifedipine dissolution characteristics using supercritical CO2. Int J Pharm 148(2):123–130CrossRefGoogle Scholar
  26. Shekunov BY, Chattopadhyay P, Seitzinger JS (2006) Method and apparatus for enhanced size reduction of particles using supercritical fluid liquefaction of materials, Google PatentsGoogle Scholar
  27. Stegemann S, Leveiller F, Franchi D, de Jong H, Linden H (2007) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31(5):249–261PubMedCrossRefGoogle Scholar
  28. Thakur R, Gupta RB (2006) Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int J Pharm 308(1–2):190–199PubMedCrossRefGoogle Scholar
  29. Tozuka Y, Miyazaki Y, Takeuchi H (2010) A combinational supercritical CO2 system for nanoparticle preparation of indomethacin. Int J Pharm 386(1–2):243–248PubMedCrossRefGoogle Scholar
  30. Valle EMMD, Galan MA (2005) Supercritical fluid technique for particle engineering: drug delivery applications. Rev Chem Eng 21:33CrossRefGoogle Scholar
  31. Varshosaz J, Hassanzadeh F, Mahmoudzadeh M, Sadeghi A (2009) Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol 189(1):97–102CrossRefGoogle Scholar
  32. Verreck G, Decorte A, Heymans K, Adriaensen J, Cleeren D, Jacobs A, Liu D, Tomasko D, Arien A, Peeters J, Rombaut P, Van den Mooter G, Brewster ME (2005) The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64. Eur J Pharm Sci 26(3–4):349–358PubMedCrossRefGoogle Scholar
  33. Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47(3):556–565CrossRefGoogle Scholar
  34. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499PubMedCrossRefGoogle Scholar
  35. Woo JS, Kim HJ, Kim Y (2006) Method for the preparatin of paclitaxel solid dispersion by using the supercritical fluid process and paclitaxel solid dispersion prepared thereby, Google PatentsGoogle Scholar
  36. Yeo S-D, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34(3):287–308CrossRefGoogle Scholar
  37. York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2(11):430–440PubMedCrossRefGoogle Scholar
  38. York P, Kompella UB, Shekunov BY (2004) Supercritical fluid technology for drug product development. CRCGoogle Scholar
  39. Young TJ, Johnson KP, Pace GW, Mishra AK (2004) Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech 5(1):E11PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2014

Authors and Affiliations

  1. 1.Forum Pharmaceuticals, Inc.North GraftonUSA
  2. 2.Merck & Co., Inc.SummitUSA

Personalised recommendations