Skip to main content

Amorphous Solid Dispersion Using Supercritical Fluid Technology

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Use of supercritical fluid (SCF) processing technologies in the pharmaceutical industry has seen remarkable growth as an alternate technology for the preparation of micro- and nano-sized particles. Carbon dioxide, having low critical temperature (31.2 °C) and pressure (73.8 bar or 7.4 Mpa) and being nonflammable, nontoxic, and environmentally safe, is the choice of SCF for processing of pharmaceuticals including heat-sensitive materials such as biologicals. Depending on how SCF is used in the technology, a number of variations have emerged to meet the needs of the compound and the product design. For example, SCF can act either as a solvent, an antisolvent, or as a solute. The superior solvent characteristics of SCF stem from its physical properties where it behaves like a gas and liquid at the same time. The high diffusivity and low viscosity coupled with low surface tension helps in solubilizing the organic compounds. SCF technologies can be grouped into several categories based on the particle growth mechanism and their collection environment. Rapid expansion of supercritical solutions, gas antisolvent (GAS) precipitation, supercritical antisolvent (SAS) precipitation, precipitation with compressed fluid antisolvent (PCA), solution-enhanced dispersion by SCF (SEDS), and precipitation from gas-saturated solutions (PGSS) are the main variants of SCF technologies. These techniques have successfully produced micro- and nanoparticles as well as amorphous solid dispersions (ASDs). In addition to being a stand-alone processing technology, SCF has been frequently used as a processing aid in the manufacture of the ASD, for instance, as temporary plasticizer in the melt extrusion process to reduce the processing temperature, melt viscosity, or to impart porosity. The premise of this chapter is to examine the potential of SCF in producing amorphous dispersions and to identify the opportunities for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayad MH, Bonnet B, Quinton J, Leigh M, Poli SM (2013) Amorphous solid dispersion successfully improved oral exposure of ADX71943 in support of toxicology studies. Drug Dev Ind Pharm 39(9):1300–1305

    Article  CAS  PubMed  Google Scholar 

  • Badens E, Majerik V, Horváth G, Szokonya L, Bosc N, Teillaud E, Charbit G (2009) Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. Int J Pharm 377(1–2):25–34

    Article  CAS  PubMed  Google Scholar 

  • Bartle KD (1988) Theory and principles of supercritical fluid chromatography. Supercritical fluid chromatography. The Royal Society of Chemistry, S. R. M. London, pp 1–28

    Google Scholar 

  • Beach S, Latham D, Sidgwick C, Hanna M, York P (1999) Control of the physical form of salmeterol xinafoate. Org Process Res Dev 3(5):370–376

    Article  CAS  Google Scholar 

  • Bikiaris DN (2011) Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 8(11):1501–1519

    Article  CAS  PubMed  Google Scholar 

  • Chen AZ, Li Y, Chau FT, Lau TY, Hu JY, Zhao Z, Mok DK (2009) Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process. Acta Biomater 5(8):2913–2919

    Article  CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1971) Increased dissolution rates of water-insoluble cardiac glycosides and steroids via solid dispersions in polyethylene glycol 6000. J Pharm Sci 60(10):1569–1571

    Article  CAS  PubMed  Google Scholar 

  • Foster NR, Fariba D, Charoenchaitrakool Kiang M, Warwick B (2003) Application of dense gas techniques for the production of fine particles. AAPS PharmSciTech 5(2):32–38

    Article  Google Scholar 

  • Gadermann MKS, Al-Marzouqi A, Signorell R (2009) Formation of naproxen/polylactic acid nanoparticles by pulsed rapid expansion of supercritical solutions. Phys Chem Chem Phys 11:7861–7868

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi R, Artursson P, Carlfors J (2000) A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids. Eur J Pharm Sci 10(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Hanna M, York P (1998) Method and apparatus for the formation of particles, Google Patents

    Google Scholar 

  • Jung J, Clavier JY, Perrut M (2003) Gram to kilogram scale up of supercritical anti-solvent process. Proceedings of the 6th international symposium on supercritical fluids, Versailles, France

    Google Scholar 

  • Kalogiannis CG, Pavlidou E, Panayiotou CG (2005) Production of amoxicillin microparticles by supercritical antisolvent precipitation. Ind Eng Chem Res 44(24):9339–9346

    Article  CAS  Google Scholar 

  • Kerc J, Srcic S, Kofler B (1998) Alternative solvent-free preparation methods for felodipine surface solid dispersions. Drug Dev Ind Pharm 24(4):359–363

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RH, Hwang SJ (2008) Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 69(2):454–465

    Article  CAS  PubMed  Google Scholar 

  • Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7(4–5):353–361

    Article  CAS  Google Scholar 

  • Lee TW, Boersen NA, Hui HW, Chow SF, Wan KY, Chow AH (2014) Delivery of poorly soluble compounds by amorphous solid dispersions. Curr Pharm Des 20(3):303–324

    Article  CAS  PubMed  Google Scholar 

  • Lobo JM, Schiavone H, Palakodaty S, York P, Clark A, Tzannis ST (2005) SCF-engineered powders for delivery of budesonide from passive DPI devices. J Pharm Sci 94(10):2276–2288

    Article  CAS  PubMed  Google Scholar 

  • Muhrer G, Meier U, Fusaro F, Albano S, Mazzotti M (2006) Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug-polymer solid dispersions. Int J Pharm 308(1–2):69–83

    Article  CAS  PubMed  Google Scholar 

  • Pathak P, Meziani MJ, Desai T, Sun YP (2004) Nanosizing drug particles in supercritical fluid processing. J Am Chem Soc 126(35):10842–10843

    Article  CAS  PubMed  Google Scholar 

  • Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Res 39(12):4531–4535

    Article  CAS  Google Scholar 

  • Poling BE, Prausnitz JM, John Paul OC, Reid RC (2001) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  • Reverchon E, De Marco I, Della Porta G (2002) Rifampicin microparticles production by supercritical antisolvent precipitation. Int J Pharm 243(1–2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues M, Peiriço N, Matos H, Gomes de Azevedo E, Lobato MR, Almeida AJ (2004) Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids 29(1–2):175–184

    Article  CAS  Google Scholar 

  • Senčar-Božič P, Srčič S, Knez Z, Kerč J (1997) Improvement of nifedipine dissolution characteristics using supercritical CO2. Int J Pharm 148(2):123–130

    Article  Google Scholar 

  • Shekunov BY, Chattopadhyay P, Seitzinger JS (2006) Method and apparatus for enhanced size reduction of particles using supercritical fluid liquefaction of materials, Google Patents

    Google Scholar 

  • Stegemann S, Leveiller F, Franchi D, de Jong H, Linden H (2007) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31(5):249–261

    Article  CAS  PubMed  Google Scholar 

  • Thakur R, Gupta RB (2006) Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int J Pharm 308(1–2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Tozuka Y, Miyazaki Y, Takeuchi H (2010) A combinational supercritical CO2 system for nanoparticle preparation of indomethacin. Int J Pharm 386(1–2):243–248

    Article  CAS  PubMed  Google Scholar 

  • Valle EMMD, Galan MA (2005) Supercritical fluid technique for particle engineering: drug delivery applications. Rev Chem Eng 21:33

    Article  Google Scholar 

  • Varshosaz J, Hassanzadeh F, Mahmoudzadeh M, Sadeghi A (2009) Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol 189(1):97–102

    Article  CAS  Google Scholar 

  • Verreck G, Decorte A, Heymans K, Adriaensen J, Cleeren D, Jacobs A, Liu D, Tomasko D, Arien A, Peeters J, Rombaut P, Van den Mooter G, Brewster ME (2005) The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64. Eur J Pharm Sci 26(3–4):349–358

    Article  CAS  PubMed  Google Scholar 

  • Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47(3):556–565

    Article  CAS  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499

    Article  PubMed  Google Scholar 

  • Woo JS, Kim HJ, Kim Y (2006) Method for the preparatin of paclitaxel solid dispersion by using the supercritical fluid process and paclitaxel solid dispersion prepared thereby, Google Patents

    Google Scholar 

  • Yeo S-D, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34(3):287–308

    Article  CAS  Google Scholar 

  • York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2(11):430–440

    Article  CAS  PubMed  Google Scholar 

  • York P, Kompella UB, Shekunov BY (2004) Supercritical fluid technology for drug product development. CRC

    Google Scholar 

  • Young TJ, Johnson KP, Pace GW, Mishra AK (2004) Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution. AAPS PharmSciTech 5(1):E11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Sheth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Sheth, P., Sandhu, H. (2014). Amorphous Solid Dispersion Using Supercritical Fluid Technology. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_19

Download citation

Publish with us

Policies and ethics