Advertisement

The Gelfand–Zeitlin integrable system and K-orbits on the flag variety

Chapter
Part of the Progress in Mathematics book series (PM, volume 257)

Abstract

In this paper, we provide an overview of the Gelfand–Zeitlin integrable system on the Lie algebra of n × n complex matrices \(\mathfrak{g}\mathfrak{l}(n, \mathbb{C})\) introduced by Kostant and Wallach in 2006. We discuss results concerning the geometry of the set of strongly regular elements, which consists of the points where the Gelfand–Zeitlin flow is Lagrangian. We use the theory of \(K_{n} = GL(n - 1,\mbox{ $\mathbb{C}$}) \times GL(1,\mbox{ $\mathbb{C}$})\)-orbits on the flag variety \(\mathcal{B}_{n}\) of \(GL(n,\mbox{ $\mathbb{C}$})\) to describe the strongly regular elements in the nilfiber of the moment map of the system. We give an overview of the general theory of orbits of a symmetric subgroup of a reductive algebraic group acting on its flag variety, and illustrate how the general theory can be applied to understand the specific example of K n and GL(n, ℂ).

Keywords

Flag variety Symmetric subgroup Nilpotent matrices Integrable systems Gelfand–Zeitlin theory 

Mathematics Subject Classification:

20G20 14M15 14L30 70H06 17B08 37J35 

References

  1. 1.
    Mark Adler, Pierre van Moerbeke, and Pol Vanhaecke. Algebraic integrability, Painlevé geometry and Lie algebras, Vol. 47, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004.Google Scholar
  2. 2.
    Michèle Audin. Hamiltonian systems and their integrability, Vol. 15, SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI, 2008. Translated from the 2001 French original by Anna Pierrehumbert, Translation edited by Donald Babbitt.Google Scholar
  3. 3.
    Roger Bielawski and Victor Pidstrygach. Gelfand-Zeitlin actions and rational maps. Math. Z., 260(4):779–803, 2008.Google Scholar
  4. 4.
    Walter Borho and Hanspeter Kraft. Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv., 54(1):61–104, 1979.Google Scholar
  5. 5.
    Michel Brion and Aloysius G. Helminck. On orbit closures of symmetric subgroups in flag varieties. Canad. J. Math., 52(2):265–292, 2000.Google Scholar
  6. 6.
    Neil Chriss and Victor Ginzburg. Representation Theory and Complex Geometry. Birkhäuser Boston Inc., Boston, MA, 1997.MATHGoogle Scholar
  7. 7.
    Mark Colarusso. The Gelfand-Zeitlin algebra and polarizations of regular adjoint orbits for classical groups. PhD thesis, University of California, San Diego, 2007.Google Scholar
  8. 8.
    Mark Colarusso. The Gelfand-Zeitlin integrable system and its action on generic elements of \(\mathfrak{g}\mathfrak{l}(n)\) and \(\mathfrak{s}\mathfrak{o}(n)\). In New Developments in Lie Theory and Geometry (Cruz Chica, Córdoba, Argentina, 2007), Vol. 491, Contemp. Math., pp. 255–281. Amer. Math. Soc., Providence, RI, 2009.Google Scholar
  9. 9.
    Mark Colarusso. The orbit structure of the Gelfand-Zeitlin group on n × n matrices. Pacific J. Math., 250(1):109–138, 2011.Google Scholar
  10. 10.
    Mark Colarusso and Sam Evens. On algebraic integrability of Gelfand-Zeitlin fields. Transform. Groups, 15(1):46–71, 2010.Google Scholar
  11. 11.
    Mark Colarusso and Sam Evens. K-orbits on the flag variety and strongly regular nilpotent matrices. Selecta Math. (N.S.), 18(1):159–177, 2012.Google Scholar
  12. 12.
    David H. Collingwood. Representations of rank one Lie groups, Vol. 137, Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.Google Scholar
  13. 13.
    Yu. A. Drozd, V. M. Futorny, and S. A. Ovsienko. Harish-Chandra subalgebras and Gel′fand-Zetlin modules. In Finite-dimensional algebras and related topics (Ottawa, ON, 1992), Vol. 424, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 79–93. Kluwer Acad. Publ., Dordrecht, 1994.Google Scholar
  14. 14.
    Pavel Etingof. Calogero-Moser systems and representation theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2007.CrossRefMATHGoogle Scholar
  15. 15.
    Sam Evens and Jiang-Hua Lu. Poisson geometry of the Grothendieck resolution of a complex semisimple group. Mosc. Math. J., 7(4):613–642, 2007.Google Scholar
  16. 16.
    Vyacheslav Futorny. Harish-Chandra categories and Kostant’s theorem. Resenhas, 6(2–3):177–186, 2004.MathSciNetMATHGoogle Scholar
  17. 17.
    Vyacheslav Futorny. personal communication, 2008.Google Scholar
  18. 18.
    I. M. Gel′fand and M. L. Cetlin. Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.), 71:825–828, 1950.Google Scholar
  19. 19.
    V. Guillemin and S. Sternberg. The Gel′fand-Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal., 52(1):106–128, 1983.CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Henryk Hecht, Dragan Miličić, Wilfried Schmid, and Joseph A. Wolf. Localization and standard modules for real semisimple Lie groups. I. The duality theorem. Invent. Math., 90(2):297–332, 1987.Google Scholar
  21. 21.
    Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1985.CrossRefMATHGoogle Scholar
  22. 22.
    Toshiyuki Kobayashi. Restrictions of unitary representations of real reductive groups. In Lie Theory, Vol. 229, Prog. Math., Birkhäuser, Boston, MA, 2005, pp. 139–207.Google Scholar
  23. 23.
    Bertram Kostant. Lie group representations on polynomial rings. Amer. J. Math., 85:327–404, 1963.Google Scholar
  24. 24.
    Bertram Kostant and Nolan Wallach. Gelfand-Zeitlin theory from the perspective of classical mechanics. I. In Studies in Lie Theory, Vol. 243, Prog. Math., Birkhäuser, Boston, MA, 2006, pp. 319–364.Google Scholar
  25. 25.
    Bertram Kostant and Nolan Wallach. Gelfand-Zeitlin theory from the perspective of classical mechanics. II. In The unity of mathematics, Vol. 244, Prog. Math., Birkhäuser, Boston, MA, 2006, pp. 387–420.Google Scholar
  26. 26.
    Toshihiko Matsuki and Toshio Ōshima. Embeddings of discrete series into principal series. In The orbit method in representation theory (Copenhagen, 1988), Vol. 82, Prog. Math., Birkhäuser, Boston, MA, 1990, pp. 147–175.Google Scholar
  27. 27.
    David Mumford. The red book of varieties and schemes, Vol. 1358, Lecture Notes in Mathematics. Springer-Verlag, Berlin, expanded edition, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello.Google Scholar
  28. 28.
    Ryszard Nest and Boris Tsygan. Remarks on modules over deformation quantization algebras. Mosc. Math. J., 4(4):911–940, 982, 2004.Google Scholar
  29. 29.
    Beresford Parlett and Gilbert Strang. Matrices with prescribed Ritz values. Linear Algebra Appl., 428(7):1725–1739, 2008.Google Scholar
  30. 30.
    Beresford N. Parlett. The symmetric eigenvalue problem, Vol. 20, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original.Google Scholar
  31. 31.
    R. W. Richardson. Orbits, invariants, and representations associated to involutions of reductive groups. Invent. Math., 66(2):287–312, 1982.CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    R. W. Richardson and T. A. Springer. The Bruhat order on symmetric varieties. Geom. Dedicata, 35(1–3):389–436, 1990.MathSciNetMATHGoogle Scholar
  33. 33.
    R. W. Richardson and T. A. Springer. Combinatorics and geometry of K-orbits on the flag manifold. In Linear algebraic groups and their representations (Los Angeles, CA, 1992), Vol. 153, Contemp. Math., Amer. Math. Soc., Providence, RI, 1993, pp. 109–142.Google Scholar
  34. 34.
    Noam Shomron and Beresford N. Parlett. Linear algebra meets Lie algebra: the Kostant-Wallach theory. Linear Algebra Appl., 431(10):1745–1767, 2009.Google Scholar
  35. 35.
    T. A. Springer. Some results on algebraic groups with involutions. In Algebraic groups and related topics (Kyoto/Nagoya, 1983), Vol. 6, Adv. Stud. Pure Math., North-Holland, Amsterdam, 1985, pp. 525–543.Google Scholar
  36. 36.
    Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968.Google Scholar
  37. 37.
    Izu Vaisman. Lectures on the geometry of Poisson manifolds, Vol. 118, Prog. in Math., Birkhäuser Verlag, Basel, 1994.Google Scholar
  38. 38.
    David A. Vogan. Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case. Invent. Math., 71(2):381–417, 1983.Google Scholar
  39. 39.
    N. M. J. Woodhouse. Geometric quantization. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1992. Oxford Science Publications.Google Scholar
  40. 40.
    Atsuko Yamamoto. Orbits in the flag variety and images of the moment map for classical groups. I. Represent. Theory, 1:329–404 (electronic), 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations