• Jeffrey Prichard
  • Hanna G. Kaspar


This chapter is an overview of frequently used markers in the differential diagnosis of both common and less common tumors of the ovary, with a focus on the effective markers employed to differentiate epithelial surface tumors, sex cord-stromal tumors and germ cell tumors. Useful panels in the differential diagnosis of mucinous tumors, germ cell and gonadal stromal tumors, and tumors with clear cell morphology are also addressed. There are 44 tables in this chapter with immunohistochemical markers answering questions that may arise when examining hematoxylin and eosin-stained sections. A summary of useful and frequently used biomarkers with potential pitfalls enables pathologists to effectively choose diagnostic panels of antibodies with the aim of improving diagnostic accuracy and reproducibility. Effective diagnostic panels of antibodies for several entities are highlighted in numerous tables.


Ovarian serous carcinoma Ovarian mucinous carcinoma Endometrioid adenocarcinoma Germ cell Sex cord Granulosa cell tumor Sertoli cell tumor Leydig cell tumor Sertoli–Leydig cell tumor Thecoma Fibroma Sclerosing stromal tumor Steroid cell tumor Annular tubules Microcystic stromal tumor Signet ring cell stromal tumor Dysgerminoma Embryonal carcinoma Yolk sac tumor Non-gestational choriocarcinoma Ovarian endometrioid stromal sarcoma Carcinosarcoma Malignant mixed mesodermal tumor Clear cell carcinoma Small cell carcinoma Undifferentiated carcinoma Immature teratoma PAX8 OCT4 NANOG SOX2 SALL4 Inhibin FOXL2 SF-1 WT1 p53 p16 ARID1A HNF-1-β Glypican-3 


  1. 1.
    McCluggage WG, Young RH. Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol. 2005;22(1):3–32.PubMedGoogle Scholar
  2. 2.
    Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27(2):161–74.PubMedGoogle Scholar
  3. 3.
    Baker PM, Oliva E. Immunohistochemistry as a tool in the differential diagnosis of ovarian tumors: an update. Int J Gynecol Pathol. 2005;24(1):39–55.PubMedGoogle Scholar
  4. 4.
    Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23.PubMedGoogle Scholar
  5. 5.
    Cathro HP, Stoler MH. Expression of cytokeratins 7 and 20 in ovarian neoplasia. Am J Clin Pathol. 2002;117(6):944–51.PubMedGoogle Scholar
  6. 6.
    Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.PubMedGoogle Scholar
  7. 7.
    Moll R, Lowe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol. 1992;140(2):427–47.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Lagendijk JH, Mullink H, van Diest PJ, Meijer GA, Meijer CJ. Immunohistochemical differentiation between primary adenocarcinomas of the ovary and ovarian metastases of colonic and breast origin. Comparison between a statistical and an intuitive approach. J Clin Pathol. 1999;52(4):283–90.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Wauters CC, Smedts F, Gerrits LG, Bosman FT, Ramaekers FC. Keratins 7 and 20 as diagnostic markers of carcinomas metastatic to the ovary. Hum Pathol. 1995;26(8):852–5.PubMedGoogle Scholar
  10. 10.
    Riedel I, Czernobilsky B, Lifschitz-Mercer B, et al. Brenner tumors but not transitional cell carcinomas of the ovary show urothelial differentiation: immunohistochemical staining of urothelial markers, including cytokeratins and uroplakins. Virchows Arch. 2001;438(2):181–91.PubMedGoogle Scholar
  11. 11.
    Ordonez NG. Transitional cell carcinomas of the ovary and bladder are immunophenotypically different. Histopathology. 2000;36(5):433–8.PubMedGoogle Scholar
  12. 12.
    McCluggage WG. My approach to and thoughts on the typing of ovarian carcinomas. J Clin Pathol. 2008;61(2):152–63.PubMedGoogle Scholar
  13. 13.
    Manivel JC, Niehans G, Wick MR, Dehner LP. Intermediate trophoblast in germ cell neoplasms. Am J Surg Pathol. 1987;11(9):693–701.PubMedGoogle Scholar
  14. 14.
    Kalhor N, Ramirez PT, Deavers MT, Malpica A, Silva EG. Immunohistochemical studies of trophoblastic tumors. Am J Surg Pathol. 2009;33(4):633–8.PubMedGoogle Scholar
  15. 15.
    Southgate J, Harnden P, Trejdosiewicz LK. Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnostic implications. Histol Histopathol. 1999;14(2):657–64.PubMedGoogle Scholar
  16. 16.
    McKenney JK, Desai S, Cohen C, Amin MB. Discriminatory immunohistochemical staining of urothelial carcinoma in situ and non-neoplastic urothelium: an analysis of cytokeratin 20, p53, and CD44 antigens. Am J Surg Pathol. 2001;25(8):1074–8.PubMedGoogle Scholar
  17. 17.
    Parker DC, Folpe AL, Bell J, et al. Potential utility of uroplakin III, thrombomodulin, high molecular weight cytokeratin, and cytokeratin 20 in noninvasive, invasive, and metastatic urothelial (transitional cell) carcinomas. Am J Surg Pathol. 2003;27(1):1–10.PubMedGoogle Scholar
  18. 18.
    McCluggage WG. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011;43(5):420–32.PubMedGoogle Scholar
  19. 19.
    Rabban JT, Longacre T. Immunohistology of the female genital tract. In: Dabbs DJ, editor. Diagnostic immunohistochemistry—thranostic and genomic applications. 4th ed. Philadelphia, PA: Elsevier Saunders; 2014. p. 653–709.Google Scholar
  20. 20.
    McCluggage WG. The pathology of and controversial aspects of ovarian borderline tumours. Curr Opin Oncol. 2010;22:462–742.PubMedGoogle Scholar
  21. 21.
    Nonaka D, Chiriboga L, Soslow RA. Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol. 2008;32(10):1566–71.PubMedGoogle Scholar
  22. 22.
    Roh MH, Kindelberger D, Crum CP. Serous tubal intraepithelial carcinoma and the dominant ovarian mass: clues to serous tumor origin? Am J Surg Pathol. 2009;33(3):376–83.PubMedGoogle Scholar
  23. 23.
    O’Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An immunohistochemical comparison between low-grade and high-grade ovarian serous carcinomas: significantly higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in high-grade neoplasms. Am J Surg Pathol. 2005;29(8):1034–41.PubMedGoogle Scholar
  24. 24.
    Takeshima Y, Amatya VJ, Kushitani K, Inai K. A useful antibody panel for differential diagnosis between peritoneal mesothelioma and ovarian serous carcinoma in Japanese cases. Am J Clin Pathol. 2008;130(5):771–9.PubMedGoogle Scholar
  25. 25.
    Frierson Jr HF, Moskaluk CA, Powell SM, et al. Large-scale molecular and tissue microarray analysis of mesothelin expression in common human carcinomas. Hum Pathol. 2003;34(6):605–9.PubMedGoogle Scholar
  26. 26.
    Lin F, Shi J, Liu H, et al. Immunohistochemical detection of the von Hippel-Lindau gene product (pVHL) in human tissues and tumors: a useful marker for metastatic renal cell carcinoma and clear cell carcinoma of the ovary and uterus. Am J Clin Pathol. 2008;129(4):592–605.PubMedGoogle Scholar
  27. 27.
    Lin F, Zhang PL, Yang XJ, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol. 2007;31(3):371–81.PubMedGoogle Scholar
  28. 28.
    Tong GX, Chiriboga L, Hamele-Bena D, Borczuk AC. Expression of PAX2 in papillary serous carcinoma of the ovary: immunohistochemical evidence of fallopian tube or secondary Müllerian system origin? Mod Pathol. 2007;20(8):856–63.PubMedGoogle Scholar
  29. 29.
    Ordonez NG. Role of immunohistochemistry in distinguishing epithelial peritoneal mesotheliomas from peritoneal and ovarian serous carcinomas. Am J Surg Pathol. 1998;22(10):1203–14.PubMedGoogle Scholar
  30. 30.
    Laury AR, Hornick JL, Perets R, et al. PAX8 reliably distinguishes ovarian serous tumors from malignant mesothelioma. Am J Surg Pathol. 2010;34(5):627–35.PubMedGoogle Scholar
  31. 31.
    Ordóñez NG. Value of PAX8, PAX2, claudin-4, and h-caldesmon immunostaining in distinguishing peritoneal epithelioid mesotheliomas from serous carcinomas. Mod Pathol. 2013;26(4):553–62.PubMedGoogle Scholar
  32. 32.
    Miettinen M, Rikala MS, Rysz J, et al. Vascular endothelial growth factor receptor 2 (VEGFR2) as a marker for malignant vascular tumors and mesothelioma—immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors. Am J Surg Pathol. 2012;36(4):629–39.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Maeda D, Ota S, Takazawa Y, et al. Glypican-3 expression in clear cell adenocarcinoma of the ovary. Mod Pathol. 2009;22(6):824–32.PubMedGoogle Scholar
  34. 34.
    Boman F, Buisine MP, Wacrenier A, et al. Mucin gene transcripts in benign and borderline mucinous tumours of the ovary: an in situ hybridization study. J Pathol. 2001;193(3):339–44.PubMedGoogle Scholar
  35. 35.
    Tashiro Y, Yonezawa S, Kim YS, Sato E. Immunohistochemical study of mucin carbohydrates and core proteins in human ovarian tumors. Hum Pathol. 1994;25(4):364–72.PubMedGoogle Scholar
  36. 36.
    Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res. 1993;53(3):641–51.PubMedGoogle Scholar
  37. 37.
    Vang R, Gown AM, Farinola M, et al. p16 expression in primary ovarian mucinous and endometrioid tumors and metastatic adenocarcinomas in the ovary: utility for identification of metastatic HPV-related endocervical adenocarcinomas. Am J Surg Pathol. 2007;31(5):653–63.PubMedGoogle Scholar
  38. 38.
    Tabrizi AD, Kalloger SE, Kobel M, et al. Primary ovarian mucinous carcinoma of intestinal type: significance of pattern of invasion and immunohistochemical expression profile in a series of 31 cases. Int J Gynecol Pathol. 2010;29(2):99–107.PubMedGoogle Scholar
  39. 39.
    Kappes S, Milde-Langosch K, Kressin P, et al. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry. Int J Cancer. 1995;64(1):52–9.PubMedGoogle Scholar
  40. 40.
    Esheba GE, Pate LL, Longacre TA. Oncofetal protein glypican-3 distinguishes yolk sac tumor from clear cell carcinoma of the ovary. Am J Surg Pathol. 2008;32(4):600–7.PubMedGoogle Scholar
  41. 41.
    Cao D, Guo S, Allan RW, Molberg KH, Peng Y. SALL4 is a novel sensitive and specific marker of ovarian primitive germ cell tumors and is particularly useful in distinguishing yolk sac tumor from clear cell carcinoma. Am J Surg Pathol. 2009;33(6):894–904.PubMedGoogle Scholar
  42. 42.
    Cameron RI, Ashe P, O’Rourke DM, Foster H, McCluggage WG. A panel of immunohistochemical stains assists in the distinction between ovarian and renal clear cell carcinoma. Int J Gynecol Pathol. 2003;22(3):272–6.PubMedGoogle Scholar
  43. 43.
    Takano M, Tsuda H, Sugiyama T. Clear cell carcinoma of the ovary: is there a role of histology-specific treatment? J Exp Clin Cancer Res. 2012;31:53.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Kato N, Sasou S, Motoyama T. Expression of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors and endometriosis of the ovary. Mod Pathol. 2006;19:83–9.PubMedGoogle Scholar
  45. 45.
    Köbel M, Kalloger SE, Carrick J, Huntsman D, et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am J Surg Pathol. 2009;33(1):14–21.PubMedGoogle Scholar
  46. 46.
    DeLair D, Oliva E, Köbel M, et al. Morphologic spectrum of immunohistochemically characterized clear cell carcinoma of the ovary: a study of 155 cases. Am J Surg Pathol. 2011;35:36–44.PubMedGoogle Scholar
  47. 47.
    Kong CS, Beck AH, Longacre TA. A panel of 3 markers including p16, ProExC, or HPV ISH is optimal for distinguishing between primary endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2010;34(7):915–26.PubMedGoogle Scholar
  48. 48.
    Madore J, Ren F, Filali-Mouhim A, et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J Pathol. 2010;220(3):392–400.PubMedGoogle Scholar
  49. 49.
    Madore J, Ren F, Filali-Mouhim A, et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J Pathol. 2010;220:392–400.PubMedGoogle Scholar
  50. 50.
    Mao TL, Shih IM. The roles of ARID1A in gynecologic cancer. J Gynecol Oncol. 2013;24(4):376–81.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Euscher ED, Malpica A, Deavers MT, Silva EG. Differential expression of WT-1 in serous carcinomas in the peritoneum with or without associated serous carcinoma in endometrial polyps. Am J Surg Pathol. 2005;29(8):1074–8.PubMedGoogle Scholar
  52. 52.
    Hashi A, Yuminamochi T, Murata S, Iwamoto H, Honda T, Hoshi K. Wilms tumor gene immunoreactivity in primary serous carcinomas of the fallopian tube, ovary, endometrium, and peritoneum. Int J Gynecol Pathol. 2003;22(4):374–7.PubMedGoogle Scholar
  53. 53.
    Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15.PubMedGoogle Scholar
  54. 54.
    Lin F, Shi J, Liu H, et al. Diagnostic utility of S100P and von Hippel-Lindau gene product (pVHL) in pancreatic adenocarcinoma-with implication of their roles in early tumorigenesis. Am J Surg Pathol. 2008;32(1):78–91.PubMedGoogle Scholar
  55. 55.
    Reu S, Neumann J. Kirchner T.[Mucinous neoplasms of the vermiform appendix, Pseudomyxoma peritonei, and the new WHO classification]. Pathologe. 2012;33(1):24–30.PubMedGoogle Scholar
  56. 56.
    Panarelli NC, Yantiss RK. Mucinous neoplasms of the appendix and peritoneum. Arch Pathol Lab Med. 2011;135(10):1261–8.PubMedGoogle Scholar
  57. 57.
    Bellizzi AM, Rock J, Marsh WL, Frankel WL. Serrated lesions of the appendix: a morphologic and immunohistochemical appraisal. Am J Clin Pathol. 2010;133(4):623–32.PubMedGoogle Scholar
  58. 58.
    Ferreira CR, Carvalho JP, Soares FA, et al. Mucinous ovarian tumors associated with pseudomyxoma peritonei of adenomucinosis type: immunohistochemical evidence that they are secondary tumors. Int J Gynecol Cancer. 2008;18(1):59–65.PubMedGoogle Scholar
  59. 59.
    Chang MS, Byeon SJ, Yoon SO, et al. Leptin, MUC2 and mTOR in appendiceal mucinous neoplasms. Pathobiology. 2012;79(1):45–53.PubMedGoogle Scholar
  60. 60.
    Park do Y, Srivastava A, Kim GH, et al. CDX2 expression in the intestinal-type gastric epithelial neoplasia: frequency and significance. Mod Pathol. 2010;23(1):54–61.PubMedGoogle Scholar
  61. 61.
    Liu Q, Teh M, Ito K, Shah N, Ito Y, Yeoh KG. CDX2 expression is progressively decreased in human gastric intestinal metaplasia, dysplasia and cancer. Mod Pathol. 2007;20(12):1286–97.PubMedGoogle Scholar
  62. 62.
    Albarracin CT, Jafri J, Montag AG, Hart J, Kuan SF. Differential expression of MUC2 and MUC5AC mucin genes in primary ovarian and metastatic colonic carcinoma. Hum Pathol. 2000;31(6):672–7.PubMedGoogle Scholar
  63. 63.
    O’Connell JT, Tomlinson JS, Roberts AA, McGonigle KF, Barsky SH. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am J Pathol. 2002;161(2):551–64.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Carico E, Fulciniti F, Giovagnoli MR, et al. Adhesion molecules and p16 expression in endocervical adenocarcinoma. Virchows Arch. 2009;455(3):245–51.PubMedGoogle Scholar
  65. 65.
    Vang R, Gown AM, Barry TS, Wheeler DT, Ronnett BM. Immunohistochemistry for estrogen and progesterone receptors in the distinction of primary and metastatic mucinous tumors in the ovary: an analysis of 124 cases. Mod Pathol. 2006;19(1):97–105.PubMedGoogle Scholar
  66. 66.
    Staebler A, Sherman ME, Zaino RJ, Ronnett BM. Hormone receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and endometrial adenocarcinomas. Am J Surg Pathol. 2002;26(8):998–1006.PubMedGoogle Scholar
  67. 67.
    Lee ES, Leong AS, Kim YS, et al. Calretinin, CD34, and alpha-smooth muscle actin in the identification of peritoneal invasive implants of serous borderline tumors of the ovary. Mod Pathol. 2006;19(3):364–72.PubMedGoogle Scholar
  68. 68.
    Comin CE, Saieva C, Messerini L. h-caldesmon, calretinin, estrogen receptor, and Ber-EP4: a useful combination of immunohistochemical markers for differentiating epithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. Am J Surg Pathol. 2007;31(8):1139–48.PubMedGoogle Scholar
  69. 69.
    Ordonez NG. Value of immunohistochemistry in distinguishing peritoneal mesothelioma from serous carcinoma of the ovary and peritoneum: a review and update. Adv Anat Pathol. 2006;13(1):16–25.PubMedGoogle Scholar
  70. 70.
    Leroy X, Farine MO, Buob D, Wacrenier A, Copin MC. Diagnostic value of cytokeratin 7, CD10 and mesothelin in distinguishing ovarian clear cell carcinoma from metastasis of renal clear cell carcinoma. Histopathology. 2007;51(6):874–6.PubMedGoogle Scholar
  71. 71.
    Cathro HP, Stoler MH. The utility of calretinin, inhibin, and WT1 immunohistochemical staining in the differential diagnosis of ovarian tumors. Hum Pathol. 2005;36(2):195–201.PubMedGoogle Scholar
  72. 72.
    Veras E, Deavers MT, Silva EG, Malpica A. Ovarian nonsmall cell neuroendocrine carcinoma: a clinicopathologic and immunohistochemical study of 11 cases. Am J Surg Pathol. 2007;31(5):774–82.PubMedGoogle Scholar
  73. 73.
    Zhao C, Bratthauer GL, Barner R, Vang R. Comparative analysis of alternative and traditional immunohistochemical markers for the distinction of ovarian sertoli cell tumor from endometrioid tumors and carcinoid tumor: a study of 160 cases. Am J Surg Pathol. 2007;31(2):255–66.PubMedGoogle Scholar
  74. 74.
    Engohan-Aloghe C. Aubain Sommerhausen Nde S, Noel JC. Ovarian involvement by desmoplastic small round cell tumor with leydig cell hyperplasia showing an unusual immunophenotype (cytokeratin negative, calretinin and inhibin positive) mimicking poorly differentiated sertoli leydig cell tumor. Int J Gynecol Pathol. 2009;28(6):579–83.PubMedGoogle Scholar
  75. 75.
    Carlson JW, Nucci MR, Brodsky J, Crum CP, Hirsch MS. Biomarker-assisted diagnosis of ovarian, cervical and pulmonary small cell carcinomas: the role of TTF-1, WT-1 and HPV analysis. Histopathology. 2007;51(3):305–12.PubMedGoogle Scholar
  76. 76.
    Kommoss F, Oliva E, Bhan AK, Young RH, Scully RE. Inhibin expression in ovarian tumors and tumor-like lesions: an immunohistochemical study. Mod Pathol. 1998;11(7):656–64.PubMedGoogle Scholar
  77. 77.
    Ordonez NG, Mackay B. Brenner tumor of the ovary: a comparative immunohistochemical and ultrastructural study with transitional cell carcinoma of the bladder. Ultrastruct Pathol. 2000;24(3):157–67.PubMedGoogle Scholar
  78. 78.
    Logani S, Oliva E, Amin MB, Folpe AL, Cohen C, Young RH. Immunoprofile of ovarian tumors with putative transitional cell (urothelial) differentiation using novel urothelial markers: histogenetic and diagnostic implications. Am J Surg Pathol. 2003;27(11):1434–41.PubMedGoogle Scholar
  79. 79.
    Al-Agha OM, Nicastri AD. An in-depth look at Krukenberg tumor: an overview. Arch Pathol Lab Med. 2006;130(11):1725–30.PubMedGoogle Scholar
  80. 80.
    Hart WR. Diagnostic challenge of secondary (metastatic) ovarian tumors simulating primary endometrioid and mucinous neoplasms. Pathol Int. 2005;55(5):231–43.PubMedGoogle Scholar
  81. 81.
    Hart WR. Mucinous tumors of the ovary: a review. Int J Gynecol Pathol. 2005;24(1):4–25.PubMedGoogle Scholar
  82. 82.
    McCluggage WG, Wilkinson N. Metastatic neoplasms involving the ovary: a review with an emphasis on morphological and immunohistochemical features. Histopathology. 2005;47(3):231–47.PubMedGoogle Scholar
  83. 83.
    Prat J. Ovarian carcinomas, including secondary tumors: diagnostically challenging areas. Mod Pathol. 2005;18 Suppl 2:S99–111.PubMedGoogle Scholar
  84. 84.
    Hardisson D, Regojo RM, Marino-Enriquez A, Martinez-Garcia M. Signet-ring stromal tumor of the ovary: report of a case and review of the literature. Pathol Oncol Res. 2008;14(3):333–6.PubMedGoogle Scholar
  85. 85.
    Irving JA, Young RH. Microcystic stromal tumor of the ovary: report of 16 cases of a hitherto uncharacterized distinctive ovarian neoplasm. Am J Surg Pathol. 2009;33(3):367–75.PubMedGoogle Scholar
  86. 86.
    Ohishi Y, Kaku T, Oya M, et al. CD56 expression in ovarian granulosa cell tumors, and its diagnostic utility and pitfalls. Gynecol Oncol. 2007;107(1):30–8.PubMedGoogle Scholar
  87. 87.
    Nolan LP, Heatley MK. The value of immunocytochemistry in distinguishing between clear cell carcinoma of the kidney and ovary. Int J Gynecol Pathol. 2001;20(2):155–9.PubMedGoogle Scholar
  88. 88.
    Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol. 2009;40(9):1213–23.PubMedGoogle Scholar
  89. 89.
    Farinola MA, Gown AM, Judson K, et al. Estrogen receptor alpha and progesterone receptor expression in ovarian adult granulosa cell tumors and Sertoli-Leydig cell tumors. Int J Gynecol Pathol. 2007;26(4):375–82.PubMedGoogle Scholar
  90. 90.
    McCluggage WG, Young RH. Ovarian sertoli-leydig cell tumors with pseudoendometrioid tubules (pseudoendometrioid sertoli-leydig cell tumors). Am J Surg Pathol. 2007;31(4):592–7.PubMedGoogle Scholar
  91. 91.
    Riopel MA, Perlman EJ, Seidman JD, Kurman RJ, Sherman ME. Inhibin and epithelial membrane antigen immunohistochemistry assist in the diagnosis of sex cord-stromal tumors and provide clues to the histogenesis of hypercalcemic small cell carcinomas. Int J Gynecol Pathol. 1998;17(1):46–53.PubMedGoogle Scholar
  92. 92.
    Busam KJ, Iversen K, Coplan KA, et al. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol. 1998;22(1):57–63.PubMedGoogle Scholar
  93. 93.
    Baker PM, Oliva E, Young RH, Talerman A, Scully RE. Ovarian mucinous carcinoids including some with a carcinomatous component: a report of 17 cases. Am J Surg Pathol. 2001;25(5):557–68.PubMedGoogle Scholar
  94. 94.
    Alenghat E, Okagaki T, Talerman A. Primary mucinous carcinoid tumor of the ovary. Cancer. 1986;58(3):777–83.PubMedGoogle Scholar
  95. 95.
    Chu PG, Weiss LM. Immunohistochemical characterization of signet-ring cell carcinomas of the stomach, breast, and colon. Am J Clin Pathol. 2004;121(6):884–92.PubMedGoogle Scholar
  96. 96.
    Vang R, Bague S, Tavassoli FA, Prat J. Signet-ring stromal tumor of the ovary: clinicopathologic analysis and comparison with Krukenberg tumor. Int J Gynecol Pathol. 2004;23(1):45–51.PubMedGoogle Scholar
  97. 97.
    Shaco-Levy R, Kachko L, Mazor M, Piura B. Ovarian signet-ring stromal tumor: a potential diagnostic pitfall. Int J Surg Pathol. 2008;16(2):180–4.PubMedGoogle Scholar
  98. 98.
    Irving JA, McCluggage WG. Ovarian spindle cell lesions: a review with emphasis on recent developments and differential diagnosis. Adv Anat Pathol. 2007;14(5):305–19.PubMedGoogle Scholar
  99. 99.
    He Y, Yang KX, Jiang W, Wang DQ, Li L. Sclerosing stromal tumor of the ovary in a 4-year-old girl with characteristics of an ovarian signet-ring stromal tumor. Pathol Res Pract. 2010;206(5):338–41.PubMedGoogle Scholar
  100. 100.
    Matsumoto M, Hayashi Y, Ohtsuki Y, et al. Signet-ring stromal tumor of the ovary: an immunohistochemical and ultrastructural study with a review of the literature. Med Mol Morphol. 2008;41(3):165–70.PubMedGoogle Scholar
  101. 101.
    McCluggage WG. Immunohistochemical and functional biomarkers of value in female genital tract lesions. Int J Gynecol Pathol. 2006;25(2):101–20.PubMedGoogle Scholar
  102. 102.
    Shintaku M, Mise Y. Müllerian adenosarcoma with a neuroectodermal component associated with an endometriotic cyst of the ovary: a case report. Pathol Int. 2012;62(4):271–5.PubMedGoogle Scholar
  103. 103.
    McCluggage WG. Mullerian adenosarcoma of the female genital tract. Adv Anat Pathol. 2010;17(2):122–9.PubMedGoogle Scholar
  104. 104.
    Gallardo A, Prat J. Mullerian adenosarcoma: a clinicopathologic and immunohistochemical study of 55 cases challenging the existence of adenofibroma. Am J Surg Pathol. 2009;33(2):278–88.PubMedGoogle Scholar
  105. 105.
    George EM, Herzog TJ, Neugut AI, Lu YS, et al. Carcinosarcoma of the ovary: natural history, patterns of treatment, and outcome. Gynecol Oncol. 2013;131(1):42–5.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Matsuura Y, Kitajima M, Hachisuga T, et al. Malignant mixed müllerian tumor with malignant neuroectodermal components (teratoid carcinosarcoma) of the ovary: report of a case with clinicopathologic findings. J Obstet Gynaecol Res. 2010;36(4):907–11.PubMedGoogle Scholar
  107. 107.
    Zhao C, Vinh TN, McManus K, et al. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am J Surg Pathol. 2009;33(3):354–66.PubMedGoogle Scholar
  108. 108.
    Sasano H, Kaga K, Sato S, Yajima A, Nagura H. Adrenal 4-binding protein in common epithelial and metastatic tumors of the ovary. Hum Pathol. 1996;27(6):595–8.PubMedGoogle Scholar
  109. 109.
    Abd-Elaziz M, Moriya T, Akahira J, Nakamura Y, Suzuki T, Sasano H. Immunolocalization of nuclear transcription factors, DAX-1 and Ad4BP/SF-1, in human common epithelial ovarian tumors: correlations with StAR and steroidogenic enzymes in epithelial ovarian carcinoma. Int J Gynecol Pathol. 2005;24(2):153–63.PubMedGoogle Scholar
  110. 110.
    Matias-Guiu X, Pons C, Prat J. Mullerian inhibiting substance, alpha-inhibin, and CD99 expression in sex cord-stromal tumors and endometrioid ovarian carcinomas resembling sex cord-stromal tumors. Hum Pathol. 1998;29(8):840–5.PubMedGoogle Scholar
  111. 111.
    Kim MS, Hur SY, Yoo NJ, Lee SH. Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of ovary and other human cancers. J Pathol. 2010;221(2):147–52.PubMedGoogle Scholar
  112. 112.
    Oliva E, Alvarez T, Young RH. Sertoli cell tumors of the ovary: a clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol. 2005;29(2):143–56.PubMedGoogle Scholar
  113. 113.
    Zhao C, Barner R, Vinh TN, McManus K, Dabbs D, Vang R. SF-1 is a diagnostically useful immunohistochemical marker and comparable to other sex cord-stromal tumor markers for the differential diagnosis of ovarian sertoli cell tumor. Int J Gynecol Pathol. 2008;27(4):507–14.PubMedGoogle Scholar
  114. 114.
    Zhao C, Bratthauer GL, Barner R, Vang R. Diagnostic utility of WT1 immunostaining in ovarian sertoli cell tumor. Am J Surg Pathol. 2007;31(9):1378–86.PubMedGoogle Scholar
  115. 115.
    Irving JA, Alkushi A, Young RH, Clement PB. Cellular fibromas of the ovary: a study of 75 cases including 40 mitotically active tumors emphasizing their distinction from fibrosarcoma. Am J Surg Pathol. 2006;30(8):929–38.PubMedGoogle Scholar
  116. 116.
    Deavers MT, Malpica A, Liu J, Broaddus R, Silva EG. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol. 2003;16(6):584–90.PubMedGoogle Scholar
  117. 117.
    Movahedi-Lankarani S, Kurman RJ. Calretinin, a more sensitive but less specific marker than alpha-inhibin for ovarian sex cord-stromal neoplasms: an immunohistochemical study of 215 cases. Am J Surg Pathol. 2002;26(11):1477–83.PubMedGoogle Scholar
  118. 118.
    McCluggage WG, Singh N, Kommoss S, et al. Ovarian cellular fibromas lack FOXL2 mutations: a useful diagnostic adjunct in the distinction from diffuse adult granulosa cell tumor. Am J Surg Pathol. 2013;37(9):1450–5.PubMedGoogle Scholar
  119. 119.
    Oliva E, Garcia-Miralles N, Vu Q, Young RH. CD10 expression in pure stromal and sex cord-stromal tumors of the ovary: an immunohistochemical analysis of 101 cases. Int J Gynecol Pathol. 2007;26(4):359–67.PubMedGoogle Scholar
  120. 120.
    Kostopoulou E, Moulla A, Giakoustidis D, Leontsini M. Sclerosing stromal tumors of the ovary: a clinicopathologic, immunohistochemical and cytogenetic analysis of three cases. Eur J Gynaecol Oncol. 2004;25(2):257–60.PubMedGoogle Scholar
  121. 121.
    Hardisson D, Regojo RM, Mariño-Enríquez A, Martínez-García M. Signet-ring stromal tumor of the ovary: report of a case and review of the literature. Pathol Oncol Res. 2008;14(3):333–6.PubMedGoogle Scholar
  122. 122.
    Vang R, Bagué S, Tavassoli FA, Prat J. Signet-ring stromal tumor of the ovary: clinicopathologic analysis and comparison with Krukenberg tumor. Int J Gynecol Pathol. 2004;23(1):45–51.PubMedGoogle Scholar
  123. 123.
    Maeda D, Shibahara J, Sakuma T, et al. β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. Am J Surg Pathol. 2011;35(10):1429–40.PubMedGoogle Scholar
  124. 124.
    Irving J, Young RH. Microcystic stromal tumor of the ovary: report of 16 cases of a hitherto uncharacterized distinctive ovarian neoplasm. Am J Surg Pathol. 2009;33(3):367–75.PubMedGoogle Scholar
  125. 125.
    Rabban JT, Zaloudek CJ. A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord–stromal tumours. Histopathology. 2013;62:71–88.PubMedGoogle Scholar
  126. 126.
    Stewart CJ, Alexiadis M, Crook ML, Fuller PJ. An immunohistochemical and molecular analysis of problematic and unclassified ovarian sex cord-stromal tumors. Hum Pathol. 2013;44(12):2774–81.PubMedGoogle Scholar
  127. 127.
    Al-Agha OM, Huwait HF, Chow C, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35(4):484–94.PubMedGoogle Scholar
  128. 128.
    Seidman JD, Abbondanzo SL, Bratthauer GL. Lipid cell (steroid cell) tumor of the ovary: immunophenotype with analysis of potential pitfall due to endogenous biotin-like activity. Int J Gynecol Pathol. 1995;14(4):331–8.PubMedGoogle Scholar
  129. 129.
    Costa MJ, DeRose PB, Roth LM, Brescia RJ, Zaloudek CJ, Cohen C. Immunohistochemical phenotype of ovarian granulosa cell tumors: absence of epithelial membrane antigen has diagnostic value. Hum Pathol. 1994;25(1):60–6.PubMedGoogle Scholar
  130. 130.
    Young RH. Sex cord-stromal tumors of the ovary and testis: their similarities and differences with consideration of selected problems. Mod Pathol. 2005;18 Suppl 2:S81–98.PubMedGoogle Scholar
  131. 131.
    McCluggage WG, Oliva E, Connolly LE, McBride HA, Young RH. An immunohistochemical analysis of ovarian small cell carcinoma of hypercalcemic type. Int J Gynecol Pathol. 2004;23(4):330–6.PubMedGoogle Scholar
  132. 132.
    McCluggage WG. Ovarian neoplasms composed of small round cells: a review. Adv Anat Pathol. 2004;11(6):288–96.PubMedGoogle Scholar
  133. 133.
    Horny HP, Marx L, Krober S, Luttges J, Kaiserling E, Dietl J. Granulosa cell tumor of the ovary. Immunohistochemical evidence of low proliferative activity and virtual absence of mutation of the p53 tumor-suppressor gene. Gynecol Obstet Invest. 1999;47(2):133–8.PubMedGoogle Scholar
  134. 134.
    Costa MJ, Walls J, Ames P, Roth LM. Transformation in recurrent ovarian granulosa cell tumors: Ki67 (MIB-1) and p53 immunohistochemistry demonstrates a possible molecular basis for the poor histopathologic prediction of clinical behavior. Hum Pathol. 1996;27(3):274–81.PubMedGoogle Scholar
  135. 135.
    Kuwashima Y, Uehara T, Kishi K, Shiromizu K, Matsuzawa M, Takayama S. Immunohistochemical characterization of undifferentiated carcinomas of the ovary. J Cancer Res Clin Oncol. 1994;120(11):672–7.PubMedGoogle Scholar
  136. 136.
    Eichhorn JH, Lawrence WD, Young RH, Scully RE. Ovarian neuroendocrine carcinomas of non-small-cell type associated with surface epithelial adenocarcinomas. A study of five cases and review of the literature. Int J Gynecol Pathol. 1996;15(4):303–14.PubMedGoogle Scholar
  137. 137.
    Cheng L, Roth LM, Zhang S, et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer. 2011;117(10):2096–20103.PubMedGoogle Scholar
  138. 138.
    Kao CS, Idrees MT, Young RH, Ulbright TM. Solid pattern yolk sac tumor: a morphologic and immunohistochemical study of 52 cases. Am J Surg Pathol. 2012;36:360–7.PubMedGoogle Scholar
  139. 139.
    Cheng L, Zhang S, Talerman A, Roth LM. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010;41:716–23.PubMedGoogle Scholar
  140. 140.
    Koo HL, Choi J, Kim KR, Kim JH. Pure non-gestational choriocarcinoma of the ovary diagnosed by DNA polymorphism analysis. Pathol Int. 2006;56(10):613–6.PubMedGoogle Scholar
  141. 141.
    Rabban JT, Lerwill MF, McCluggage WG, et al. Primary ovarian carcinoid tumors may express CDX-2: a potential pitfall in distinction from metastatic intestinal carcinoid tumors involving the ovary. Int J Gynecol Pathol. 2009;28(1):41–8.PubMedGoogle Scholar
  142. 142.
    Cheng L, Zhang S, Talerman A, Roth LM. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010; 41(5):716–23.PubMedGoogle Scholar
  143. 143.
    Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166(3):913–21.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Cools M, Stoop H, Kersemaekers AM, et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab. 2006;91(6):2404–13.PubMedGoogle Scholar
  145. 145.
    Niehans GA, Manivel JC, Copland GT, et al. Immunohistochemistry of germ cell and trophoblastic neoplasms. Cancer. 1988;62(6):1113–23.PubMedGoogle Scholar
  146. 146.
    Ulbright TM. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod Pathol. 2005;18 Suppl 2:S61–79.PubMedGoogle Scholar
  147. 147.
    Liu A, Cheng L, Du J, et al. Diagnostic utility of novel stem cell markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors. Am J Surg Pathol. 2010;34(5):697–706.PubMedGoogle Scholar
  148. 148.
    Damjanov I, Osborn M, Miettinen M. Keratin 7 is a marker for a subset of trophoblastic cells in human germ cell tumors. Arch Pathol Lab Med. 1990;114(1):81–3.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Surgical PathologyGeisinger Medical CenterDanvilleUSA
  2. 2.Pathology and Laboratory MedicineGeisinger Medical CenterDanvilleUSA
  3. 3.Geisinger Medical LaboratoriesGeisinger Wyoming Valley Medical Center, Temple University Medical SchoolWilkes-BarreUSA

Personalised recommendations