Perspectives on the Development of Elastography

  • Kevin J. Glaser
  • Richard L. Ehman


Elasticity imaging has emerged as an increasingly popular research and clinical tool for the evaluation of the mechanical properties of tissue in vivo. Using ultrasound and MRI imaging techniques primarily, current applications include imaging the liver, spleen, brain, breast, and thyroid, among other organs, to gain information about normative and disease-related tissue biomechanics that are difficult or impossible to assess using any other technique. The purpose of this chapter is to provide a broad overview of the subject of elasticity imaging. Topics include some of the theoretical considerations of tissue biomechanics that motivated the development of the field, an outline of the various motion sources and imaging techniques used to perform elasticity imaging, and a discussion of some of the most common processing tools used to derive the mechanical properties of tissue from images of tissue motion.


Shear Wave Speed Tissue Motion Direct Inversion Ultrasound Elastography Tissue Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Field D. Anatomy: palpation and surface markings. 3rd ed. Oxford: Butterworth Heinemann; 2001.Google Scholar
  2. 2.
    Bickley LS, Szilagyi PG. Bates’ guide to physical examination and history taking. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2003.Google Scholar
  3. 3.
    Mangione S. Physical diagnosis secrets. 2nd ed. Philadelphia: Mosby/Elsevier; 2008.Google Scholar
  4. 4.
    Bacon BR, O’Grady JG, Di Bisceglie AM, Lake JR. Comprehensive clinical hepatology. 2nd ed. Philadelphia: Elsevier Limited; 2006.Google Scholar
  5. 5.
    Barton MB, Harris R, Fletcher SW. Does this patient have breast cancer? The screening clinical breast examination: should it be done? How? JAMA. 1999;282(13):1270–80.PubMedGoogle Scholar
  6. 6.
    Roubidoux MA, Bailey JE, Wray LA, Helvie MA. Invasive cancers detected after breast cancer screening yielded a negative result: relationship of mammographic density to tumor prognostic factors. Radiology. 2004;230(1):42–8.PubMedGoogle Scholar
  7. 7.
    Roubidoux MA, Wilson TE, Orange RJ, Fitzgerald JT, Helvie MA, Packer SA. Breast cancer in women who undergo screening mammography: relationship of hormone replacement therapy to stage and detection method. Radiology. 1998;208(3):725–8.PubMedGoogle Scholar
  8. 8.
    Guimaraes CM, Correia MM, Baldisserotto M, Aires EPD, Coelho JF. Intraoperative ultrasonography of the liver in patients with abdominal tumors - a new approach. J Ultrasound Med. 2004;23(12):1549–55.PubMedGoogle Scholar
  9. 9.
    Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer; 1993.Google Scholar
  10. 10.
    Duck FA. Physical properties of tissue: a comprehensive reference book. London: Academic; 1990.Google Scholar
  11. 11.
    Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Noth U, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev. 2013;65(4):581–603.PubMedGoogle Scholar
  12. 12.
    Tritto G, Davies NA, Jalan R. Liver replacement therapy. Semin Respir Crit Care Med. 2012;33(1):70–9.PubMedGoogle Scholar
  13. 13.
    Malchesky PS. Artificial organs 2011: a year in review. Artif Organs. 2012;36(3):291–323.PubMedGoogle Scholar
  14. 14.
    Atala A. Engineering organs. Curr Opin Biotechnol. 2009;20(5):575–92.PubMedGoogle Scholar
  15. 15.
    Yang F, Li JCM. Impression test – a review. Mater Sci Eng R. 2013;74(8):233–53.Google Scholar
  16. 16.
    Walley SM. Historical origins of indentation hardness testing. Mater Sci Technol. 2012;28(9–10):1028–44.Google Scholar
  17. 17.
    Lakes RS. Viscoelastic materials. Cambridge: Cambridge University Press; 2009.Google Scholar
  18. 18.
    Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech. 2010;43(6):1017–30.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Laksari K, Shafieian M, Darvish K. Constitutive model for brain tissue under finite compression. J Biomech. 2012;45(4):642–6.PubMedGoogle Scholar
  20. 20.
    Sparrey CJ, Keaveny TM. Compression behavior of porcine spinal cord white matter. J Biomech. 2011;44(6):1078–82.PubMedGoogle Scholar
  21. 21.
    Stokes IA, Laible JP, Gardner-Morse MG, Costi JJ, Iatridis JC. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression. Ann Biomed Eng. 2011;39(1):122–31.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hatami-Marbini H, Etebu E. An experimental and theoretical analysis of unconfined compression of corneal stroma. J Biomech. 2013;46(10):1752–8.PubMedGoogle Scholar
  23. 23.
    Mansour JM, Welter JF. Multimodal evaluation of tissue-engineered cartilage. J Med Biol Eng. 2013;33(1):1–16.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Van Loocke M, Lyons CG, Simms CK. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech. 2008;41(7):1555–66.PubMedGoogle Scholar
  25. 25.
    Chen DL, Yang PF, Lai YS. A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation. Microelectron Reliab. 2012;52(3):541–58.Google Scholar
  26. 26.
    O’Connor WT, Smyth A, Gilchrist MD. Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther. 2011;130(2):106–13.PubMedGoogle Scholar
  27. 27.
    Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32(4):1733–59.Google Scholar
  28. 28.
    Murphy JG. Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur J Mech-A/Solids. 2013;42:90–6.Google Scholar
  29. 29.
    Cowin SC. Bone poroelasticity. J Biomech. 1999;32(3):217–38.PubMedGoogle Scholar
  30. 30.
    Darvish KK, Crandall JR. Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med Eng Phys. 2001;23(9):633–45.PubMedGoogle Scholar
  31. 31.
    Hasan A, Ragaert K, Swieszkowski W, Selimovic S, Paul A, Camci-Unal G, et al. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2013;47(9):1949–63. doi: 10.1016/j.jbiomech.2013.09.023 Oct 21.PubMedGoogle Scholar
  32. 32.
    Aki K, Richards PG. Quantitative seismology. 2nd ed. Sausalito: University Science; 2002.Google Scholar
  33. 33.
    Oestreicher HL. Field and impedance of an oscillating sphere in a viscoelastic medium with application to biophysics. J Acoust Soc Am. 1951;23(6):707–14.Google Scholar
  34. 34.
    Auld BA. Acoustic fields and waves in solids. 2nd ed. Malabar: Krieger; 1990.Google Scholar
  35. 35.
    Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, et al. Biophysical bases of elasticity imaging. In: Jones JP, editor. Acoustical imaging. New York: Plenum; 1995. p. 223–40.Google Scholar
  36. 36.
    Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.PubMedGoogle Scholar
  37. 37.
    Uffmann K, Ladd ME. Actuation systems for MR elastography: design and applications. IEEE Eng Med Biol Mag. 2008;27(3):28–34.PubMedGoogle Scholar
  38. 38.
    Tse ZT, Janssen H, Hamed A, Ristic M, Young I, Lamperth M. Magnetic resonance elastography hardware design: a survey. Proc Inst Mech Eng H. 2009;223(4):497–514.PubMedGoogle Scholar
  39. 39.
    Dighe M, Bae U, Richardson ML, Dubinsky TJ, Minoshima S, Kim Y. Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology. 2008;248(2):662–9.PubMedGoogle Scholar
  40. 40.
    Konofagou EE, D’Hooge J, Ophir J. Myocardial elastography – a feasibility study in vivo. Ultrasound Med Biol. 2002;28(4):475–82.PubMedGoogle Scholar
  41. 41.
    Hirsch S, Klatt D, Freimann F, Scheel M, Braun J, Sack I. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med. 2013;70(3):671–83.Google Scholar
  42. 42.
    Kolen AF, Miller NR, Ahmed EE, Bamber JC. Characterization of cardiovascular liver motion for the eventual application of elasticity imaging to the liver in vivo. Phys Med Biol. 2004;49(18):4187–206.PubMedGoogle Scholar
  43. 43.
    Chung S, Breton E, Mannelli L, Axel L. Liver stiffness assessment by tagged MRI of cardiac-induced liver motion. Magn Reson Med. 2011;65(4):949–55.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28(2):227–35.PubMedGoogle Scholar
  45. 45.
    Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35.PubMedGoogle Scholar
  46. 46.
    Sinkus R, Tanter M, Bercoff J, Siegmann K, Pernot M, Athanasiou A, et al. Potential of MRI and ultrasound radiation force in elastography: applications to diagnosis and therapy. Proc IEEE. 2008;96(3):490–9.Google Scholar
  47. 47.
    McDannold N, Maier SE. Magnetic resonance acoustic radiation force imaging. Med Phys. 2008;35(8):3748–58.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wu T, Felmlee JP, Greenleaf JF, Riederer SJ, Ehman RL. MR imaging of shear waves generated by focused ultrasound. Magn Reson Med. 2000;43(1):111–5.PubMedGoogle Scholar
  49. 49.
    Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng. 2003;5:57–78.PubMedGoogle Scholar
  50. 50.
    Chen S, Urban MW, Pislaru C, Kinnick R, Zheng Y, Yao A, et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):55–62.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2011;56:R1–29.PubMedGoogle Scholar
  52. 52.
    Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011;8(64):1521–49.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Sporea I, Gilja OH, Bota S, Sirli R, Popescu A. Liver elastography – an update. Med Ultrason. 2013;15(4):304–14.PubMedGoogle Scholar
  54. 54.
    Castaneda B, Ormachea J, Rodriguez P, Parker KJ. Application of numerical methods to elasticity imaging. Mol Cell Biomech: MCB. 2013;10(1):43–65.PubMedGoogle Scholar
  55. 55.
    Krouskop TA, Dougherty DR, Vinson FS. A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J Rehabil Res Dev. 1987;24(2):1–8.PubMedGoogle Scholar
  56. 56.
    Yamakoshi Y, Sato J, Sato T. Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(2):45–53.PubMedGoogle Scholar
  57. 57.
    Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231–9.PubMedGoogle Scholar
  58. 58.
    Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for “sonoelasticity imaging”. Ultrasound Med Biol. 1990;16(3):241–6.PubMedGoogle Scholar
  59. 59.
    Sanada M, Ebara M, Fukuda H, Yoshikawa M, Sugiura N, Saisho H, et al. Clinical evaluation of sonoelasticity measurement in liver using ultrasonic imaging of internal forced low-frequency vibration. Ultrasound Med Biol. 2000;26(9):1455–60.PubMedGoogle Scholar
  60. 60.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.PubMedGoogle Scholar
  61. 61.
    Ophir J, Kallel F, Varghese T, Konofagou E, Alam SK, Krouskop T, et al. Elastography. C R Acad Sci Ser IV-Phys Astr. 2001;2(8):1193–212.Google Scholar
  62. 62.
    Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.PubMedGoogle Scholar
  63. 63.
    Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):426–35.PubMedGoogle Scholar
  64. 64.
    Righetti R, Righetti M, Ophir J, Krouskop TA. The feasibility of estimating and imaging the mechanical behavior of poroelastic materials using axial strain elastography. Phys Med Biol. 2007;52(11):3241–59.PubMedGoogle Scholar
  65. 65.
    Ophir J, Srinivasan S, Righetti R, Thittai A. Elastography: a decade of progress (2000–2010). Curr Med Imaging Rev. 2011;7(4):292–312.Google Scholar
  66. 66.
    Cespedes I, Ophir J, Ponnekanti H, Maklad N. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging. 1993;15(2):73–88.PubMedGoogle Scholar
  67. 67.
    Ophir J, Alam SK, Garra BS, Kallel F, Konofagou EE, Krouskop T, et al. Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason. 2002;29:155–71.Google Scholar
  68. 68.
    Jung KS, Kim SU. Clinical applications of transient elastography. Clin Mol Hepatol. 2012;18(2):163–73.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Gennisson JL, Grenier N, Combe C, Tanter M. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012;38(9):1559–67.PubMedGoogle Scholar
  70. 70.
    Sinkus R, Bercoff J, Tanter M, Gennisson JL, El Khoury C, Servois V, et al. Nonlinear viscoelastic properties of tissue assessed by ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(11):2009–18.PubMedGoogle Scholar
  71. 71.
    Kirkpatrick SJ, Wang RK, Duncan DD, Kulesz-Martin M, Lee K. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt Express. 2006;14(21):9770–9.PubMedGoogle Scholar
  72. 72.
    Wang RKK, Ma ZH, Kirkpatrick SJ. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl Phys Lett. 2006;89(14):144103.Google Scholar
  73. 73.
    Rogowska J, Patel N, Plummer S, Brezinski ME. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. Br J Radiol. 2006;79(945):707–11.PubMedGoogle Scholar
  74. 74.
    Kennedy KM, McLaughlin RA, Kennedy BF, Tien A, Latham B, Saunders CM, et al. Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J Biomed Opt. 2013;18(12):121510.PubMedGoogle Scholar
  75. 75.
    Wang S, Larin KV. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett. 2014;39(1):41–4.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nahas A, Tanter M, Nguyen TM, Chassot JM, Fink M, Claude BA. From supersonic shear wave imaging to full-field optical coherence shear wave elastography. J Biomed Opt. 2013;18(12):121514.PubMedGoogle Scholar
  77. 77.
    Lee MK, Drangova M, Holdsworth DW, Fenster A. Application of dynamic computed tomography for measurements of local aortic elastic modulus. Med Biol Eng Comput. 1999;37(1):13–24.PubMedGoogle Scholar
  78. 78.
    Wang ZG, Liu Y, Wang G, Sun LZ. Nonlinear elasto-mammography for characterization of breast tissue properties. Int J Biomed Imaging. 2011;2011:10. 540820.Google Scholar
  79. 79.
    Wang ZG, Liu Y, Sun LZ, Wang G, Fajardo LL. Elasto-mammography: theory, algorithm, and phantom study. Int J Biomed Imaging. 2006;2006:53050.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Drangova M, Holdsworth DW, Boyd CJ, Dunmore PJ, Roach MR, Fenster A. Elasticity and geometry measurements of vascular specimens using a high-resolution laboratory CT scanner. Physiol Meas. 1993;14(3):277–90.PubMedGoogle Scholar
  81. 81.
    Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989;172(2):349–50.PubMedGoogle Scholar
  82. 82.
    Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med. 1999;42(6):1048–60.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang H, Amini AA. Cardiac motion and deformation recovery from MRI: a review. IEEE Trans Med Imaging. 2012;31(2):487–503.PubMedGoogle Scholar
  84. 84.
    Creswell LL, Moulton MJ, Wyers SG, Pirolo JS, Fishman DS, Perman WH, et al. An experimental method for evaluating constitutive models of myocardium in in vivo hearts. Am J Physiol. 1994;267(2 Pt 2):H853–63.PubMedGoogle Scholar
  85. 85.
    Yeon SB, Reichek N, Tallant BA, Lima JA, Calhoun LP, Clark NR, et al. Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry. J Am Coll Cardiol. 2001;38(2):555–61.PubMedGoogle Scholar
  86. 86.
    Gotte MJ, Germans T, Russel IK, Zwanenburg JJ, Marcus JT, van Rossum AC, et al. Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J Am Coll Cardiol. 2006;48(10):2002–11.PubMedGoogle Scholar
  87. 87.
    Sabet AA, Christoforou E, Zatlin B, Genin GM, Bayly PV. Deformation of the human brain induced by mild angular head acceleration. J Biomech. 2008;41(2):307–15.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Soellinger M, Ryf S, Boesiger P, Kozerke S. Assessment of human brain motion using CSPAMM. J Magn Reson Imaging. 2007;25(4):709–14.PubMedGoogle Scholar
  89. 89.
    Fu YB, Chui CK, Teo CL, Kobayashi E. Motion tracking and strain map computation for quasi-static magnetic resonance elastography. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):428–35.PubMedGoogle Scholar
  90. 90.
    Ceelen KK, Stekelenburg A, Mulders JL, Strijkers GJ, Baaijens FP, Nicolay K, et al. Validation of a numerical model of skeletal muscle compression with MR tagging: a contribution to pressure ulcer research. J Biomech Eng. 2008;130(6):061015.PubMedGoogle Scholar
  91. 91.
    Osman NF. Detecting stiff masses using strain-encoded (SENC) imaging. Magn Reson Med. 2003;49(3):605–8.PubMedGoogle Scholar
  92. 92.
    Bernstein MA, King KF, Zhou ZJ. Handbook of MRI pulse sequences. Burlington: Elsevier Academic; 2004.Google Scholar
  93. 93.
    Haacke EM. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley; 1999.Google Scholar
  94. 94.
    Singer JR. NMR diffusion and flow measurements and an introduction to spin phase graphing. J Phys E. 1978;11:281–91.Google Scholar
  95. 95.
    Dumoulin CL, Hart Jr HR. Magnetic resonance angiography. Radiology. 1986;161(3):717–20.PubMedGoogle Scholar
  96. 96.
    Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr. 1986;10(5):715–22.PubMedGoogle Scholar
  97. 97.
    Chenevert TL, Skovoroda AR, O’Donnell M, Emelianov SY. Elasticity reconstructive imaging by means of stimulated echo MRI. Magn Reson Med. 1998;39(3):482–90.PubMedGoogle Scholar
  98. 98.
    Plewes DB, Bishop J, Samani A, Sciarretta J. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol. 2000;45(6):1591–610.PubMedGoogle Scholar
  99. 99.
    Hardy PA, Ridler AC, Chiarot CB, Plewes DB, Henkelman RM. Imaging articular cartilage under compression-cartilage elastography. Magn Reson Med. 2005;53(5):1065–73.PubMedGoogle Scholar
  100. 100.
    Siegler P, Jenne JW, Boese JM, Huber PE, Schad LR. STEAM-sequence with multi-echo-readout for static magnetic resonance elastography. Z Med Phys. 2007;17(2):118–26.PubMedGoogle Scholar
  101. 101.
    Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.PubMedGoogle Scholar
  102. 102.
    Muthupillai R, Rossman PJ, Lomas DJ, Greenleaf JF, Riederer SJ, Ehman RL. Magnetic resonance imaging of transverse acoustic strain waves. Magn Reson Med. 1996;36(2):266–74.PubMedGoogle Scholar
  103. 103.
    Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med. 2007;57(2):388–95.PubMedGoogle Scholar
  104. 104.
    Lewa CJ. Magnetic resonance imaging in the presence of mechanical waves: NMR frequency modulation, mechanical waves as NMR factor, local temperature variations. Spectrosc Lett. 1991;24(1):55–67.Google Scholar
  105. 105.
    Lewa CJ, de Certaines JD. MR imaging of viscoelastic properties. J Magn Reson Imaging. 1995;5(2):242–4.PubMedGoogle Scholar
  106. 106.
    Garteiser P, Sahebjavaher RS, Ter Beek LC, Salcudean S, Vilgrain V, Van Beers BE, et al. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed. 2013;26(10):1326–35.PubMedGoogle Scholar
  107. 107.
    Hirsch S, Guo J, Reiter R, Papazoglou S, Kroencke T, Braun J, et al. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn Reson Med. 2014;71(1):267–77.PubMedGoogle Scholar
  108. 108.
    Glaser KJ, Felmlee JP, Ehman RL. Rapid MR elastography using selective excitations. Magn Reson Med. 2006;55(6):1381–9.PubMedGoogle Scholar
  109. 109.
    Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med. 2005;53(2):372–87.PubMedGoogle Scholar
  110. 110.
    Maderwald S, Uffmann K, Galban CJ, de Greiff A, Ladd ME. Accelerating MR elastography: a multiecho phase-contrast gradient-echo sequence. J Magn Reson Imaging. 2006;23(5):774–80.PubMedGoogle Scholar
  111. 111.
    Bieri O, Maderwald S, Ladd ME, Scheffler K. Balanced alternating steady-state elastography. Magn Reson Med. 2006;55(2):233–41.PubMedGoogle Scholar
  112. 112.
    Huwart L, Salameh N, Ter Beek L, Vicaut E, Peeters F, Sinkus R, et al. MR elastography of liver fibrosis: preliminary results comparing spin-echo and echo-planar imaging. Eur Radiol. 2008;18(11):2535–41.PubMedGoogle Scholar
  113. 113.
    Johnson CL, McGarry MD, Van Houten EE, Weaver JB, Paulsen KD, Sutton BP, et al. Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction. Magn Reson Med. 2013;70(2):404–12.PubMedPubMedCentralGoogle Scholar
  114. 114.
    McCracken PJ, Manduca A, Felmlee J, Ehman RL. Mechanical transient-based magnetic resonance elastography. Magn Reson Med. 2005;53(3):628–39.PubMedGoogle Scholar
  115. 115.
    Gallichan D, Robson MD, Bartsch A, Miller KL. TREMR: table-resonance elastography with MR. Magn Reson Med. 2009;62(3):815–21.PubMedGoogle Scholar
  116. 116.
    Souchon R, Salomir R, Beuf O, Milot L, Grenier D, Lyonnet D, et al. Transient MR elastography (t-MRE) using ultrasound radiation force: theory, safety, and initial experiments in vitro. Magn Reson Med. 2008;60(4):871–81.PubMedGoogle Scholar
  117. 117.
    Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237–54.PubMedGoogle Scholar
  118. 118.
    Leclerc GE, Charleux F, Robert L, Ho Ba Tho MC, Rhein C, Latrive JP, et al. Analysis of liver viscosity behavior as a function of multifrequency magnetic resonance elastography (MMRE) postprocessing. J Magn Reson Imaging. 2013;38(2):422–8.PubMedGoogle Scholar
  119. 119.
    McCullough MB, Domire ZJ, Reed AM, Amin S, Ytterberg SR, Chen Q, et al. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve. 2011;43(4):585–90.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Xu L, Chen J, Yin M, Glaser KJ, Chen Q, Woodrum DA, et al. Assessment of stiffness changes in the ex vivo porcine aortic wall using magnetic resonance elastography. Magn Reson Imaging. 2012;30(1):122–7.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Dresner MA, Rose GH, Rossman PJ, Muthupillai R, Manduca A, Ehman RL. Magnetic resonance elastography of skeletal muscle. J Magn Reson Imaging. 2001;13(2):269–76.PubMedGoogle Scholar
  122. 122.
    Yin M, Woollard J, Wang XF, Torres VE, Harris PC, Ward CJ, et al. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med. 2007;58(2):346–53.PubMedGoogle Scholar
  123. 123.
    Kolipaka A, Aggarwal SR, McGee KP, Anavekar N, Manduca A, Ehman RL, et al. Magnetic resonance elastography as a method to estimate myocardial contractility. J Magn Reson Imaging. 2012;36(1):120–7.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Knutsson H, Westin CF, Granlund G. Local multiscale frequency and bandwidth estimation. Proc IEEE Int Conf Image Process. 1994;1:36–40.Google Scholar
  125. 125.
    Bensamoun SF, Robert L, Leclerc GE, Debernard L, Charleux F. Stiffness imaging of the kidney and adjacent abdominal tissues measured simultaneously using magnetic resonance elastography. Clin Imaging. 2011;35(4):284–7.PubMedGoogle Scholar
  126. 126.
    Rouviere O, Souchon R, Pagnoux G, Menager JM, Chapelon JY. Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults. J Magn Reson Imaging. 2011;34(4):880–6.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Braun J, Buntkowsky G, Bernarding J, Tolxdorff T, Sack I. Simulation and analysis of magnetic resonance elastography wave images using coupled harmonic oscillators and Gaussian local frequency estimation. Magn Reson Imaging. 2001;19(5):703–13.PubMedGoogle Scholar
  128. 128.
    Clayton EH, Okamoto RJ, Bayly PV. Mechanical properties of viscoelastic media by local frequency estimation of divergence-free wave fields. J Biomech Eng. 2013;135(2):021025.PubMedGoogle Scholar
  129. 129.
    Sahebjavaher RS, Baghani A, Honarvar M, Sinkus R, Salcudean SE. Transperineal prostate MR elastography: initial in vivo results. Magn Reson Med. 2013;69(2):411–20.PubMedGoogle Scholar
  130. 130.
    Li BN, Chui CK, Ong SH, Numano T, Washio T, Homma K, et al. Modeling shear modulus distribution in magnetic resonance elastography with piecewise constant level sets. Magn Reson Imaging. 2012;30(3):390–401.PubMedGoogle Scholar
  131. 131.
    Oliphant TE, Manduca A, Ehman RL, Greenleaf JF. Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn Reson Med. 2001;45(2):299–310.PubMedGoogle Scholar
  132. 132.
    Papazoglou S, Hirsch S, Braun J, Sack I. Multifrequency inversion in magnetic resonance elastography. Phys Med Biol. 2012;57(8):2329–46.PubMedGoogle Scholar
  133. 133.
    Boulet T, Kelso ML, Othman SF. Microscopic magnetic resonance elastography of traumatic brain injury model. J Neurosci Methods. 2011;201(2):296–306.PubMedGoogle Scholar
  134. 134.
    Doyley MM. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys Med Biol. 2012;57(3):R35–73.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Romano AJ, Bucaro JA, Ehman RL, Shirron JJ. Evaluation of a material parameter extraction algorithm using MRI-based displacement measurement. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1575–81.PubMedGoogle Scholar
  136. 136.
    Baghani A, Salcudean S, Honarvar M, Sahebjavaher RS, Rohling R, Sinkus R. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction. IEEE Trans Med Imaging. 2011;30(8):1555–65.PubMedGoogle Scholar
  137. 137.
    Romano A, Scheel M, Hirsch S, Braun J, Sack I. In vivo waveguide elastography of white matter tracts in the human brain. Magn Reson Med. 2012;68(5):1410–22.PubMedGoogle Scholar
  138. 138.
    Kolipaka A, McGee KP, Araoz PA, Glaser KJ, Manduca A, Romano AJ, et al. MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure–volume model in a left ventricular model of the heart. Magn Reson Med. 2009;62(1):135–40.PubMedPubMedCentralGoogle Scholar
  139. 139.
    McLaughlin JR, Zhang N, Manduca A. Calculating tissue shear modulus and pressure by 2D log-elastographic methods. Inverse Prob. 2010;26(8):085007.Google Scholar
  140. 140.
    Kwon OI, Park C, Nam HS, Woo EJ, Seo JK, Glaser KJ, et al. Shear modulus decomposition algorithm in magnetic resonance elastography. IEEE Trans Med Imaging. 2009;28(10):1526–33.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Perreard IM, Pattison AJ, Doyley M, McGarry MD, Barani Z, Van Houten EE, et al. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions. Phys Med Biol. 2010;55(22):6801–15.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Litwiller DV, Lee SJ, Kolipaka A, Mariappan YK, Glaser KJ, Pulido JS, et al. MR elastography of the ex vivo bovine globe. J Magn Reson Imaging. 2010;32(1):44–51.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Van Houten EEW, Miga MI, Weaver JB, Kennedy FE, Paulsen KD. Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn Reson Med. 2001;45(5):827–37.PubMedGoogle Scholar
  144. 144.
    McGarry MD, Van Houten EE, Johnson CL, Georgiadis JG, Sutton BP, Weaver JB, et al. Multiresolution MR elastography using nonlinear inversion. Med Phys. 2012;39(10):6388–96.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Perrinez PR, Kennedy FE, Van Houten EE, Weaver JB, Paulsen KD. Modeling of soft poroelastic tissue in time-harmonic MR elastography. IEEE Trans Biomed Eng. 2009;56(3):598–608.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Perrinez PR, Kennedy FE, Van Houten EE, Weaver JB, Paulsen KD. Magnetic resonance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated soft tissues. IEEE Trans Med Imaging. 2010;29(3):746–55.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Manduca A, Lake DS, Kruse SA, Ehman RL. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med Image Anal. 2003;7(4):465–73.PubMedGoogle Scholar
  148. 148.
    Honarvar M, Sahebjavaher R, Sinkus R, Rohling R, Salcudean S. Curl-based finite element reconstruction of the shear modulus without assuming local homogeneity: time harmonic case. IEEE Trans Med Imaging. 2013;32(12):2189–99.Google Scholar
  149. 149.
    Baghani A, Salcudean S, Rohling R. Theoretical limitations of the elastic wave equation inversion for tissue elastography. J Acoust Soc Am. 2009;126(3):1541.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of RadiologyMayo Clinic College of Medicine, Mayo ClinicRochesterUSA

Personalised recommendations