Skip to main content

Embryonal Brain Tumors

  • Chapter

Abstract

Central nervous system embryonal brain tumors comprise a heterogeneous group which includes medulloblastoma (MB), central nervous system primitive neuroectodermal tumors (CNS-PNETs), and pineoblastoma. They are highly aggressive malignant tumors that often arise in children, are difficult to treat, and cause significant cancer-related morbidity or mortality. There has been tremendous gain in the survival of localized MB in recent years. However, treatment remains highly toxic and punishing and is much less effective for metastatic MB and non-MB PNET while recurrent MB remains largely incurable—underscoring the need to better define diagnostic and therapeutic approaches to this wide spectrum of biological diseases that receive similar multimodal therapeutic regimens. Global genomic studies have now separated embryonal tumors into clinically relevant molecular classes and are paving the way for a new era of biology-informed clinical management of these tumors. This chapter will review current clinical understanding of MB, CNS-PNET, and pineoblastoma and insights into novel therapeutic approaches for these diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Packer RJ, et al. Medulloblastoma and primitive neuroectodermal tumors. Handb Clin Neurol. 2012;105:529–48.

    Article  PubMed  Google Scholar 

  2. McKean-Cowdin R, et al. Trends in childhood brain tumor incidence, 1973-2009. J Neurooncol. 2013;115(2):153–60.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch Neurol. 2008;65(11):1419–24.

    Article  PubMed  Google Scholar 

  4. Tortori-Donati P, et al. Medulloblastoma in children: CT and MRI findings. Neuroradiology. 1996;38(4):352–9.

    Article  CAS  PubMed  Google Scholar 

  5. Louis DN, International Agency for Research on Cancer. WHO classification of tumours of the central nervous system, World Health Organization classification of tumours. 4th ed. Lyon: International Agency for Research on Cancer; 2007.

    Google Scholar 

  6. Gessi M, et al. Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol. 2009;33(2):211–7.

    Article  PubMed  Google Scholar 

  7. Picard D, et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol. 2012;13(8):838–48.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Li M, et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell. 2009;16(6):533–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Oliver TG, Wechsler-Reya RJ. Getting at the root and stem of brain tumors. Neuron. 2004;42(6):885–8.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor MD, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Northcott PA, et al. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol. 2012;8(6):340–51.

    Article  CAS  PubMed  Google Scholar 

  12. Rieken S, et al. Outcome and prognostic factors of radiation therapy for medulloblastoma. Int J Radiat Oncol Biol Phys. 2011;81(3):e7–13.

    Article  PubMed  Google Scholar 

  13. Rutkowski S, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352(10):978–86.

    Article  CAS  PubMed  Google Scholar 

  14. Grill J, et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol. 2005;6(8):573–80.

    Article  CAS  PubMed  Google Scholar 

  15. Grundy RG, et al. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J Cancer. 2010;46(1):120–33.

    Article  CAS  PubMed  Google Scholar 

  16. Fangusaro J, et al. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): report of the Head Start I and II experience. Pediatr Blood Cancer. 2008;50(2):312–8.

    Article  PubMed  Google Scholar 

  17. Geyer JR, et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children’s Cancer Group. J Clin Oncol. 2005;23(30):7621–31.

    Article  PubMed  Google Scholar 

  18. Packer RJ, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24(25):4202–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lannering B, et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J Clin Oncol. 2012;30(26):3187–93.

    Article  PubMed  Google Scholar 

  20. Gajjar A, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813–20.

    Article  PubMed  Google Scholar 

  21. Jakacki RI, et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children’s Oncology Group Phase I/II study. J Clin Oncol. 2012;30(21):2648–53.

    Article  CAS  PubMed  Google Scholar 

  22. Pizer B, et al. Treatment of recurrent central nervous system primitive neuroectodermal tumours in children and adolescents: results of a Children’s Cancer and Leukaemia Group study. Eur J Cancer. 2011;47(9):1389–97.

    Article  PubMed  Google Scholar 

  23. Donahue B, et al. Radiation therapy quality in CCG/POG intergroup 9961: implications for craniospinal irradiation and the posterior fossa boost in future medulloblastoma trials. Front Oncol. 2012;2:185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. LoRusso PM, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17(8):2502–11.

    Article  CAS  PubMed  Google Scholar 

  25. Rudin CM, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361(12):1173–8.

    Article  CAS  PubMed  Google Scholar 

  26. Buonamici S, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51.

    Article  Google Scholar 

  27. Fouladi M, et al. A molecular biology and phase II trial of lapatinib in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Neurooncol. 2013;114(2):173–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kongkham PN, et al. Inhibition of the MET Receptor Tyrosine Kinase as a Novel Therapeutic Strategy in Medulloblastoma. Transl Oncol. 2010;3(6):336–43.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fouladi M, et al. A phase II study of the farnesyl transferase inhibitor, tipifarnib, in children with recurrent or progressive high-grade glioma, medulloblastoma/primitive neuroectodermal tumor, or brainstem glioma: a Children’s Oncology Group study. Cancer. 2007;110(11):2535–41.

    Article  CAS  PubMed  Google Scholar 

  30. Lee MJ, et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci U S A. 2012;109(20):7859–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. de Bont JM, et al. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol. 2008;10(6):1040–60.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Spiller SE, et al. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J Neurooncol. 2008;87(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  33. Pei Y, et al. An animal model of MYC-driven medulloblastoma. Cancer Cell. 2012;21(2):155–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Baryawno N, et al. Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res. 2010;70(1):266–76.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou L, et al. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res. 2010;70(20):8199–210.

    Article  CAS  PubMed  Google Scholar 

  36. Prochownik EV, Vogt PK. Therapeutic Targeting of Myc. Genes Cancer. 2010;1(6):650–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Li MH, et al. Molecular genetics of supratentorial primitive neuroectodermal tumors and pineoblastoma. Neurosurg Focus. 2005;19(5):E3.

    Article  PubMed  Google Scholar 

  38. Korshunov A, et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 2010;120(2):253–60.

    Article  PubMed  Google Scholar 

  39. Gessi M, et al. H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neurooncol. 2013;112(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  40. Miller S, et al. Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol. 2011;13(8):866–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Reddy AT, et al. Outcome for children with supratentorial primitive neuroectodermal tumors treated with surgery, radiation, and chemotherapy. Cancer. 2000;88(9):2189–93.

    Article  CAS  PubMed  Google Scholar 

  42. Timmermann B, et al. Role of radiotherapy in supratentorial primitive neuroectodermal tumor in young children: results of the German HIT-SKK87 and HIT-SKK92 trials. J Clin Oncol. 2006;24(10):1554–60.

    Article  PubMed  Google Scholar 

  43. McBride SM, Daganzo SM, Banerjee A, Gupta N, Lamborn KR, Prados MD, Berger MS, Wara WM, Haas-Kogan DA. Radiation is an important component of multimodality therapy for pediatric non-pineal supratentorial primitive neuroectodermal tumors. Int J Radiat Oncol Biol Phys. 2008;72(5):1319–23.

    Article  PubMed  Google Scholar 

  44. Johnston DL, et al. Supratentorial primitive neuroectodermal tumors: a Canadian pediatric brain tumor consortium report. J Neurooncol. 2008;86(1):101–8.

    Article  PubMed  Google Scholar 

  45. Massimino M, et al. Evolving of therapeutic strategies for CNS-PNET. Pediatr Blood Cancer. 2013;60(12):2031–5.

    PubMed  Google Scholar 

  46. Spence T, et al. A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in Embryonal Tumor with Multilayered Rosettes. J Neurooncol. 2014;16(1):62–71.

    CAS  Google Scholar 

  47. Fevre-Montange M, et al. Microarray analysis reveals differential gene expression patterns in tumors of the pineal region. J Neuropathol Exp Neurol. 2006;65(7):675–84.

    Article  CAS  PubMed  Google Scholar 

  48. Antoneli CB, et al. Trilateral retinoblastoma. Pediatr Blood Cancer. 2007;48(3):306–10.

    Article  PubMed  Google Scholar 

  49. Duffner PK, et al. Lack of efficacy of postoperative chemotherapy and delayed radiation in very young children with pineoblastoma. Pediatric Oncology Group. Med Pediatr Oncol. 1995;25(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  50. Fangusaro JR, et al. Brainstem primitive neuroectodermal tumors (bstPNET): results of treatment with intensive induction chemotherapy followed by consolidative chemotherapy with autologous hematopoietic cell rescue. Pediatr Blood Cancer. 2008;50(3):715–7.

    Article  PubMed  Google Scholar 

  51. Jakacki RI, et al. Survival and prognostic factors following radiation and/or chemotherapy for primitive neuroectodermal tumors of the pineal region in infants and children: a report of the Childrens Cancer Group. J Clin Oncol. 1995;13(6):1377–83.

    CAS  PubMed  Google Scholar 

  52. Cohen BH, et al. Prognostic factors and treatment results for supratentorial primitive neuroectodermal tumors in children using radiation and chemotherapy: a Childrens Cancer Group randomized trial. J Clin Oncol. 1995;13(7):1687–96.

    CAS  PubMed  Google Scholar 

  53. Pomeroy SL, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Huang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chan, T.S.Y., Wang, X., Spence, T., Taylor, M.D., Huang, A. (2015). Embryonal Brain Tumors. In: Scheinemann, K., Bouffet, E. (eds) Pediatric Neuro-oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1541-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1541-5_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1540-8

  • Online ISBN: 978-1-4939-1541-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics