In Earth’s Shadow

  • John Westfall
  • William Sheehan
Part of the Astrophysics and Space Science Library book series (ASSL, volume 410)


We spend half our lives in Earth’s shadow and call it night. When we pass into the shadow every sunset, we enter a solar eclipse that lasts until dawn. For a few minutes after sunset, we can see the Earth’s shadow for what it is, rising in the east, shown in the two views in Plate 3.1a. (Note that we will be using celestial directions whenever possible; if north is up, then east is to the left. We will point out whenever we use the “IAU” planetary directional system, which instead has east to the right when north is up.) Rising from the horizon is the shadow itself, a blue-grey color.


Solar Eclipse Galilean Satellite Lunar Reconnaissance Orbiter Lunar Eclipse Total Eclipse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen DA (1971a) Infrared studies of the lunar terrain. I. The background moon. Moon 2:320–337ADSCrossRefGoogle Scholar
  2. Allen DA (1971b) Infrared studies of the lunar terrain. II. Thermal anomalies. Moon 2:435–462ADSCrossRefGoogle Scholar
  3. Allen DA (1975) Infrared, the new astronomy. Wiley, New YorkGoogle Scholar
  4. Andrewes WJH (ed) (1996) The quest for longitude. Harvard Collection of Historical Scientific Instruments, Cambridge, MAGoogle Scholar
  5. Ashbrook J (1960) Linné in fact and legend. Sky Telescope 20(2):87–88Google Scholar
  6. Ashbrook J (1964) Measuring the earth’s shadow. Sky Telescope 27(3):156–160ADSGoogle Scholar
  7. Ashbrook J (1967) Observations of two eclipses this spring. Sky Telescope 34(1):52–56Google Scholar
  8. Barbier D (1961) Photometry of lunar eclipses. Cpt. 7. In: Kuiper GP, Middlehurst BM (eds) pp 249–271Google Scholar
  9. Baum RM (2007) The haunted observatory: curiosities from the astronomer’s cabinet. Prometheus, Amherst, NYGoogle Scholar
  10. Beer W, Mädler JH (1837) Der Mond. Verlag von Simon Schropp & Comp, BerlinGoogle Scholar
  11. Boeddicker O (1885–1887) On the changes of the radiation of heat from the moon during the total eclipse of 1884, October 4, as measured at the observatory, Birr Castle. The Scientific Transactions of the Royal Dublin Society 3, Ser. II:321–336Google Scholar
  12. Boorstin DJ (1985) The discoverers. Vintage Books, New York, NYGoogle Scholar
  13. Brown LA (1941) Jean Dominique Cassini and his world map of 1696. University of Michigan Press, Ann ArborGoogle Scholar
  14. Cassini JJ (1740) Tables astronomiques. ParisGoogle Scholar
  15. Chauvenet W (1960) A manual of spherical and practical astronomy, 2 vols. Dover Publications, New York, NY, Reprint of 5th edition, 1891Google Scholar
  16. Danjon A-L (1920) Sur une relation entre l’éclairement de la lune éclipsée et l’activité solaire. C R Acad Sci 171:1127–1129Google Scholar
  17. Danjon A-L (1951) Les éclipses de lune par la pénombre en 1951. L’Astronomie 65:51–53ADSGoogle Scholar
  18. de Vaucouleurs G (1944) La loi normale de luminosité des éclipses de lune de 1894 à 1943. C R Acad Sci 218:655–656Google Scholar
  19. Dicks DR (1970) Early Greek astronomy to Aristotle. Cornell University Press, Ithaca, NYGoogle Scholar
  20. Di Giovanni G, Di Giovanni E, Clementi G (2012) Atmospheric ozone and 15th June 2011 Moon eclipse. Astronomia 2012:24–27Google Scholar
  21. Dubois J-S (1956) Peut-on observer sur la lune des phénomènes de luminescence? L’Astronomie 70:225–234ADSGoogle Scholar
  22. Espenak F (1989) Fifty year canon of lunar eclipses: 1986–2035. NASA Reference Publication 1216. NASA, Washington, DCGoogle Scholar
  23. Espenak F, Meeus J (2009b) Five millenium catalog of lunar eclipses: −1999 to +3000 (2000 BCE to 3000 CE). NASA/TP-2009-214173. Goddard Space Flight Center, Greenbelt, MDGoogle Scholar
  24. Evans J (1998) The history and practice of ancient astronomy. Oxford University Press, New York, NYGoogle Scholar
  25. Fesenkov V (1959) On the investigation of atmospheric ozone by photometry of lunar eclipses. Sov Astron 3:554–562ADSGoogle Scholar
  26. Fisher WJ (1924) The brightnesses of lunar eclipses 1860–1922. Smithsonian Miscellaneous Collections, Publication 2751. Smithsonian Institution, WashingtonGoogle Scholar
  27. Flammarion C (1884a) l’éclipse totale de Luna du 4 octobre. L’Astronomie 3(11):401–408ADSGoogle Scholar
  28. Flanders T (2005) Lunar eclipse science. Sky Telescope 109(3):84–85Google Scholar
  29. Fountain WF, Raine WL, Fountain JA et al (1976) Observational and theoretical temperatures for a total lunar eclipse. Moon 15:421–437ADSCrossRefGoogle Scholar
  30. Garcia Muñoz A et al (2011) The impact of the Kasatochi eruption on the Moon’s illumination during the August 2008 lunar eclipse. Geophys Res Lett 38:L14805, 1–5Google Scholar
  31. Green RM (1985) Spherical astronomy. Cambridge University Press, Cambridge, UKGoogle Scholar
  32. Haas WH (1939) The effect of lunar eclipses on the moon. Popular Astron 47:373–376ADSGoogle Scholar
  33. Haas WH (1942) Does anything ever happen on the moon? J Roy Astron Soc Can 36:237–272, 317–328, 361–376, 397–408Google Scholar
  34. Haas WH (1943) A search for physical changes on the moon during a lunar eclipse. Popular Astron 51:264–268ADSGoogle Scholar
  35. Haas WH (1947) Is the moon changeless?”. J Assoc Lunar Planet Observers 1(5):4–6Google Scholar
  36. Haas WH (1949) The lunar eclipse of April 13, 1949. J Assoc Lunar Planet Observers 3(7):1–6; 3(8):8–12; 3(9):3–6Google Scholar
  37. Halley E (1722) Observations on the eclipse of the moon, June 18, 1722 and the longitude of Port Royal in Jamaica determined thereby. Phil Trans Roy Soc Lond 32:235–236Google Scholar
  38. Hayne PO, Paige DA, Siegler MA et al (2010) Infrared observations of a lunar eclipse from orbit: constraits on rock abundance and near surface thermal properties from the Diviner Lunar Radiometer. Bull Am Astron Soc 42:979ADSGoogle Scholar
  39. Hayne PO, Greenhagen BT, Siegler MA et al (2011) The Moon’s extremely insulating near-surface: Diviner infrared observations of a total lunar eclipse. American Geophysical Union, Fall Meeting 2011, abstract #P13D-1712Google Scholar
  40. Hédervári P (1980) Great volcanic eruptions and the luminosity of the moon during total eclipses. J Assoc Lunar Planet Observers 28:158–165Google Scholar
  41. Heppenger J (1895) Über der Helligkeit des verfinsterten Mondes und die scheinbare Vergrösserung des Erdschattens. Sitzungsberichte d. K. Akademie d. Wissensch. Wein. Mathem.-naturw. Klasse 103/II:189–224Google Scholar
  42. de Lehaie H, Joseph J-C-H (1882) Vade-mecum de l’astronome. F. Hayez, BrusselsGoogle Scholar
  43. Karkoschka E (1996) Earth’s swollen shadow. Sky Telescope 92(3):98–100ADSGoogle Scholar
  44. Keen RA (1983) Volcanic aerosols and lunar eclipses. Science 222:1011–1013ADSCrossRefGoogle Scholar
  45. Kepler J (1604) Astronomiae pars optica. FrankfurtGoogle Scholar
  46. Kopal Z, Rackham TW (1964) Lunar luminescence and solar flares. Sky Telescope 27(3):140–141ADSGoogle Scholar
  47. Kosik SM (1940) Kontur zemnoi teni pri lunnom zatmenii 7–8 Noyabrya 1938 goda. (The contour of the earth’s shadow during the lunar eclipse of 7–8 November 1938.). Bull Tashkent Observ 2(3):79–114ADSGoogle Scholar
  48. Kühl A (1928) Über der Einfluss des Grenzkontrastes auf Präzisionsmessungen. Physikalische Zeitschrift 29:1–34Google Scholar
  49. De La Hire P (1687) Tabularum astronomicarum pars prior. ParisGoogle Scholar
  50. Le Gentil G (1755, pub. 1761) Remarques sur la grandeur de demi diameter de l’ombre de la Terre dans les eclipses de Lune, à l’occasion de l’éclipse du 27 mars 1755. Histoire de l’Académie des sciences 1755:36–53Google Scholar
  51. Link F (1956) Die Mondfinsternisse. Akademische Verlagsgesellschaft Geest & Portic K.-G, LeipzigGoogle Scholar
  52. Link F (1961) Lunar eclipses. Cpt. 6. In: Kopal Z (ed) Physics and astronomy of the moon. Academic, New York, NY, pp 161–229Google Scholar
  53. Link F (1969) Eclipse phenomena in astronomy. Springer, New York, NYCrossRefGoogle Scholar
  54. Link F (1974) Danjon’s law and the volcanic eruptions. Moon 11:261–262ADSCrossRefGoogle Scholar
  55. Lynch DK, Livingston W (1995) Color and light in nature. Cambridge University Press, Cambridge, UKGoogle Scholar
  56. Matsushima S (1966) Variation of lunar eclipse brightness and its association with the geomagnetic planetary index K p. Astron J 71:699–705ADSCrossRefGoogle Scholar
  57. Meeus J (2009a) The oblateness of the earth’s shadow. Cpt. 21, In: Maeus J (ed) (2009b) pp 113–114Google Scholar
  58. Melloni M (1846) Sur la puissance calorifique de la lumière de la lune. C R Acad Sci 22:541–544Google Scholar
  59. Mendillo M, Baumgardner J (1995) Constraints on the origin of the moon’s atmosphere from observations during a lunar eclipse. Nature 377:404–406ADSCrossRefGoogle Scholar
  60. Mendillo M, Baumgardner J, Wilson J (1999) Observational test for the solar wind sputtering origin of the moon’s extended sodium atmosphere. Icarus 137:13–23ADSCrossRefGoogle Scholar
  61. Moore JH, Brigham LA (1927) The spectrum of the eclipsed moon. Publ Astron Soc Pac 39:223–226ADSCrossRefGoogle Scholar
  62. Newton I (1995) The Principia. Prometheus Books, Amherst, NY, Trans. by Motte A of Philosophiae naturalis principia mathematica (1687)Google Scholar
  63. Pallé E, Osorio Z, Rosa M, Barrena R et al (2009) Earth’s transmission spectrum from lunar eclipse observations. Nature 459:814–816ADSCrossRefGoogle Scholar
  64. Parsons L, Fourth Earl of Rosse (1873) The Bakerian Lecture: On the radiation of heat from the moon, the law of its absorption by our atmosphere, and of its variation in amount with her phases. Phil Trans Roy Soc Lond 163:587–627CrossRefGoogle Scholar
  65. Pettit E (1940) Radiation measurements on the eclipsed moon. Astrophys J 91:408–420ADSCrossRefGoogle Scholar
  66. Pettit E, Nicholson SB (1930) Lunar radiation and temperatures. Astrophys J 71:102–135ADSCrossRefGoogle Scholar
  67. Pickering WH (1900) Lunar changes during the eclipse of December 16, 1899. Popular Astron 8:57–59ADSCrossRefGoogle Scholar
  68. Pickering WH (1902) The total lunar eclipse of October 16, 1902. Harvard College Observatory Circular No. 67Google Scholar
  69. Pickering WH (1903) Linné, Plato, Messier. Ann Harvard Coll Observ 51:23–33ADSGoogle Scholar
  70. Pickering WH (1906) Observations of the crater Linné during the lunar eclipse of February 8, 1906. Astron J 25:97ADSCrossRefGoogle Scholar
  71. Pierce AK, Slaughter CD (1977) Solar limb darkening. Sol Phys 51:25–41ADSCrossRefGoogle Scholar
  72. Pike RJ (1980) Geometric interpretation of lunar craters. Geological Survey Professional Paper 1046-C. U. S. Government Printing Office, WashingtonGoogle Scholar
  73. Potter A, Morgan TH (1988) Discovery of sodium and potassium vapor in the atmosphere of the moon. Science 241(4866):675–680ADSCrossRefGoogle Scholar
  74. Price SD, Mizuno D, Murdock TL (2003) Thermal profiles of the eclipsed moon. Adv Space Res 31:2299–2304ADSCrossRefGoogle Scholar
  75. Reaves G, Walker MF (1952) Photoelectric photometry of the lunar eclipse of 1950 September 26. Publ Astron Soc Pac 64:15–19ADSCrossRefGoogle Scholar
  76. Reynolds MD, Westfall J (2008) A report on the August 28, 2007 total lunar eclipse. J Assoc Lunar Planet Observers 50(1):26–29Google Scholar
  77. Saari JM, Shorthill RW, Deaton TK (1966) Infrared and visible images of the eclipsed moon of December 19, 1964. Icarus 5:635–659ADSCrossRefGoogle Scholar
  78. Sanduleak N, Stock J (1965) Indication of luminescence in the December 1964 lunar eclipse. Publ Astron Soc Pac 77:237–240ADSCrossRefGoogle Scholar
  79. von Seeliger HH (1896) Die scheinbare Vergrösserung des Erdschattens bei Mondfinsternissen. Abhandlungen der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften 19:383–448Google Scholar
  80. Seidelmann PK (ed) (1992) Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley, CAGoogle Scholar
  81. Sekiguchi N (1980) Photometry of the lunar surface during lunar eclipses. Moon Planets 23:99–107ADSMathSciNetGoogle Scholar
  82. Sheehan WP, Dobbins TA (2001) Epic moon: a history of lunar exploration in the age of the telescope. Willmann-Bell, Richmond, VAGoogle Scholar
  83. Shorthill RW, Borough HC, Conley JM (1960) Enhanced lunar thermal radiation during a lunar eclipse. Publ Astron Soc Pac 72:481–485ADSCrossRefGoogle Scholar
  84. Slipher VM (1914) On the spectrum of the eclipsed Moon. Astron Nachr 199(4758):103–104ADSCrossRefGoogle Scholar
  85. Stebbins JH (1906) Observations of the crater Linné during the lunar eclipse of February 8, 1906. Astron J 25:87–88ADSCrossRefGoogle Scholar
  86. Stothers RB (1996) Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960. J Geophys Res 101(D2):3901–3920ADSCrossRefGoogle Scholar
  87. Stothers RB (2001) Major optical depth perturbations to the stratosphere from volcanic eruptions: stellar extinction period, 1961–1978. J Geophys Res 106(D3):2993–3004ADSCrossRefGoogle Scholar
  88. Stothers RB (2004) Stratospheric transparency derived from total lunar eclipse colors, 1665–1800. Publ Astron Soc Pac 116:886–893ADSCrossRefGoogle Scholar
  89. Stothers RB (2005) Stratospheric transparency derived from total lunar eclipse colors, 1801–1881. Publ Astron Soc Pac 117:1445–1450ADSCrossRefGoogle Scholar
  90. Svestka Z (1950) A note on the brightness of lunar eclipses. Bull Astron Inst Czechoslovakia 2:41–43ADSGoogle Scholar
  91. Svestka Z (1954) The problem of a meteoritic dust layer in the earth atmosphere. Bull Astron Inst Czechoslovakia 5:91–98ADSGoogle Scholar
  92. Terrall M (2002) The man who flattened the earth. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  93. Tombaugh CW (1957) Search for small satellites of the moon during the total lunar eclipse of November 18, 1956. J Assoc Lunar Planet Observers 11(1–6):61–64Google Scholar
  94. Ugolnikov OS, Punanova AF, Krushinsky VV (2013) Trajectory retrieval and component investigations of the southern polar stratosphere based on high-resolution spectroscopy of the totally eclipsed moon surface. J Quant Spectros Rad Tran 116:67–74ADSCrossRefGoogle Scholar
  95. United States, Naval Observatory, Nautical Almanac Office (2012) The astronomical almanac for the year 2013. U.S. Government Printing Office, WashingtonGoogle Scholar
  96. Van Helden A (1985) Measuring the Universe. Cosmic dimensions from Aristarchus to Halley. University of Chicago Press, ChicagoGoogle Scholar
  97. Vidal-Madjar A, Arnold L, Ehrenreich D et al (2010) The earth as an extrasolar transiting planet. Earth’s atmospheric composition and thickness revealed by lunar eclipse observations. Astron Astrophys 523:A57 (14 pp)Google Scholar
  98. Wesselink AJ (1948) Heat conductivity and nature of the lunar surface. Bull Astron Inst Neth 10:351–363ADSGoogle Scholar
  99. Westfall JE (1989) Thirty years of lunar eclipse umbrae: 1956–1985. J Assoc Lunar Planet Observers 33:112–117ADSGoogle Scholar
  100. Woodward D (1987) Medieval mappamundi. Cpt. 18. Harley JB, Woodward D (eds) pp 286–370Google Scholar
  101. Wright JK (1923) Notes on the knowledge of latitude and longitude in the middle ages. Isis 5:75–98CrossRefGoogle Scholar
  102. Yamaguchi M (1978) The brightness of the totally eclipsed moon in 1939–1978. Ir Astron J 13:254–258ADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2015

Authors and Affiliations

  • John Westfall
    • 1
  • William Sheehan
    • 2
    • 3
  1. 1.Association of Lunar and Planetary ObserversAntiochUSA
  2. 2.WillmarUSA
  3. 3.FlagstaffUSA

Personalised recommendations