Navigation and Computer-Assisted Craniomaxillofacial Surgery

Chapter

Abstract

In this chapter, the prerequisites for navigation as part of a digital workflow, which CAS offers to the CMF surgeon, are described including an overview of available navigation systems. However, navigation itself is an island solution if it is not implemented into the idea of free usage of DICOM data set info, which indeed has shifted from diagnosis making through the radiologist only towards the basis of an idea of quality control during the different phases of treatment, where navigation is one during the surgery. The use of computer-assisted surgery and intraoperative navigation in CMF surgery is outlined in the field of biopsy taking, traumatology, orthognathic surgery and congenital deformity treatment, implant dentistry, surgical oncology treatment including the interface to adjuvant therapies and reconstruction of the jaws. Computer assistance and navigation contribute to transparency and allow to quality control each step of treatment with the chance for correction if needed. Thus, these technological advances contribute to the idea of a common trunk use of digital imaging information with interspecialty interface improvement due to language independency and openness with broad access. It took years for the industry to respond to surgeons’ requests for having independent analysing and planning platforms from navigation systems; today there are different systems on the market that allow for sound preoperative planning, definition of the treatment goal, image fusion of different data sets and import and export of STL information. Thus, the idea of quality control with intraoperative visualization of hidden structures can be realized, and in real time for improved educational purposes.

Keywords

Navigation systems Computer-assisted surgery (CAS) Craniomaxillofacial (CMF) surgery Computer Assisted Preoperative Planning (CAPP) 

References

  1. 1.
    Hassfeld S, Streib S, Sahl H, Stratmann U, Fehrentz D, Zoller J. Low-dose computerized tomography of the jaw bone in pre-implantation diagnosis. Limits of dose reduction and accuracy of distance measurements. Mund Kiefer Gesichtschir. 1998;2(4):188–93.CrossRefGoogle Scholar
  2. 2.
    Schnelle C. Vergleich der Strahlenexposition bei der Digitalen-Volumen-Tomographie, der Panoramaschichtaufnahme und der Computertomographie [dissertation]. Düsseldorf: Heinrich-Heine-Universität; 2001.Google Scholar
  3. 3.
    Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol. 2004;33(2):83–6.CrossRefGoogle Scholar
  4. 4.
    Zizelmann C, Gellrich NC, Metzger MC, Schoen R, Schmelzeisen R, Schramm A. Computer-assisted reconstruction of orbital floor based on cone beam tomography. Br J Oral Maxillofac Surg. 2007;45(1):79–80.Google Scholar
  5. 5.
    Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas L, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): part I. On subjective image quality. Eur J Radiol. 2010;75(2):265–9.CrossRefGoogle Scholar
  6. 6.
    Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 1997;204(3):739–44.CrossRefGoogle Scholar
  7. 7.
    Hein PA, Kremser C, Judmaier W, Griebel J, Rudisch A, Pfeiffer KP, et al. Diffusion-weighted MRI—a new parameter for advanced rectal carcinoma? Rofo. 2003;175(3):381–6.CrossRefGoogle Scholar
  8. 8.
    Herneth AM, Guccione S, Bednarski M. Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol. 2003;45(3):208–13.CrossRefGoogle Scholar
  9. 9.
    Kamel IR, Bluemke DA, Ramsey D, Abusedera M, Torbenson M, Eng J, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol. 2003;181(3):708–10.CrossRefGoogle Scholar
  10. 10.
    Barrington SF, Maisey MN, Wahl RL. Atlas of clinical positron emission tomography. London: Hodder Arnold; 2006.Google Scholar
  11. 11.
    Rana M, Gellrich NC, Joos U, Piffko J, Kater W. 3D evaluation of postoperative swelling using two different cooling methods following orthognathic surgery: a randomised observer blind prospective pilot study. Int J Oral Maxillofac Surg. 2011;40(7):690–6.CrossRefGoogle Scholar
  12. 12.
    Rana M, Essig H, Eckardt AM, Tavassol F, Ruecker M, Schramm A, et al. Advances and innovations in computer-assisted head and neck oncologic surgery. J Craniofac Surg. 2012;23(1):272–8.CrossRefGoogle Scholar
  13. 13.
    Schramm A, Gellrich NC, Schmelzeisen R. Navigational Surgery of the Facial Skeleton. Berlin/Heidelberg/New York: Springer; 2006.Google Scholar
  14. 14.
    Pirris SM, Nottmeier EW. A case series on the technical use of three-dimensional image guidance in subaxial anterior cervical surgery. Int J Med Robot. 2015;11(1):44–51.CrossRefGoogle Scholar
  15. 15.
    Zamorano LJ, Nolte L, Kadi AM, Jiang Z. Interactive intraoperative localization using an infrared-based system. Neurol Res. 1993;15(5):290–8.CrossRefGoogle Scholar
  16. 16.
    Heermann R, Schwab B, Issing PR, Haupt C, Hempel C, Lenarz T. Image-guided surgery of the anterior skull base. Acta Otolaryngol. 2001;121(8):973–8.CrossRefGoogle Scholar
  17. 17.
    Bartling SH, Leinung M, Graute J, Rodt T, Dullin C, Becker H, et al. Increase of accuracy in intraoperative navigation through high-resolution flat-panel volume computed tomography: experimental comparison with multislice computed tomography-based navigation. Otol Neurotol. 2007;28(1):129–34.CrossRefGoogle Scholar
  18. 18.
    Schramm A, Gellrich NC, Naumann S, Bühner U, Schön R, Schmelzeisen R. Non-invasive referencing in computer assisted surgery. Med Biol Eng Comput. 1999;37:644–5.Google Scholar
  19. 19.
    Heiland M, Pohlenz P, Blessmann M, Werle H, Fraederich M, Schmelzle R, et al. Navigated implantation after microsurgical bone transfer using intraoperatively acquired cone-beam computed tomography data sets. Int J Oral Maxillofac Surg. 2008;37(1):70–5.CrossRefGoogle Scholar
  20. 20.
    Heiland M, Schulze D, Blake F, Schmelzle R. Intraoperative imaging of zygomaticomaxillary complex fractures using a 3D C-arm system. Int J Oral Maxillofac Surg. 2005;34(4):369–75.CrossRefGoogle Scholar
  21. 21.
    Eggers G, Kress B, Rohde S, Muhling J. Intraoperative computed tomography and automated registration for image-guided cranial surgery. Dentomaxillofac Radiol. 2009;38(1):28–33.CrossRefGoogle Scholar
  22. 22.
    Stelter K, Ledderose G, Hempel JM, Morhard DF, Flatz W, Krause E, et al. Image guided navigation by intraoperative CT scan for cochlear implantation. Comput Aided Surg. 2012;17(3):153–60.CrossRefGoogle Scholar
  23. 23.
    Chu ST. Endoscopic sinus surgery under navigation system—analysis report of 79 cases. J Chin Med Assoc. 2006;69(11):529–33.CrossRefGoogle Scholar
  24. 24.
    Anon JB, Lipman SP, Oppenheim D, Halt RA. Computer-assisted endoscopic sinus surgery. Laryngoscope. 1994;104(7):901–5.CrossRefGoogle Scholar
  25. 25.
    Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H. In vivo accuracy testing and clinical experience with the ISG viewing wand. Neurosurgery. 1996;39(1):194–202. discussion -4CrossRefGoogle Scholar
  26. 26.
    Olivier A, Germano IM, Cukiert A, Peters T. Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical note. J Neurosurg. 1994;81(4):629–33.CrossRefGoogle Scholar
  27. 27.
    Klimek L, Mosges R. Computer-assisted surgery in the ENT specialty. Developments and experiences from the first decade. Laryngorhinootologie. 1998;77(5):275–82.CrossRefGoogle Scholar
  28. 28.
    Anon JB, Klimek L, Mosges R, Zinreich SJ. Computer-assisted endoscopic sinus surgery. An international review. Otolaryngol Clin N Am. 1997;30(3):389–401.Google Scholar
  29. 29.
    Zaaroor M, Bejerano Y, Weinfeld Z, Ben-Haim S. Novel magnetic technology for intraoperative intracranial frameless navigation: in vivo and in vitro results. Neurosurgery. 2001;48(5):1100–7. discussion 7-8PubMedGoogle Scholar
  30. 30.
    Frantz DD, Wiles AD, Leis SE, Kirsch SR. Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol. 2003;48(14):2241–51.CrossRefGoogle Scholar
  31. 31.
    Mascott CR. Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery. 2005;57(4 Suppl):295–301. discussion 295–301.PubMedGoogle Scholar
  32. 32.
    Reinhardt HF, Horstmann GA, Gratzl O. Microsurgical removal of deep vascular malformations using sonar-stereometry. Ultraschall Med. 1991;12(2):80–3.CrossRefGoogle Scholar
  33. 33.
    Nitsche N, Hubert M, Strasser G, Schuiz H, Wunderlich A, Arnold W. Einsatz eines berührungsfreien computergestützten Orientierungssystems bei Nasennebenhöhlenoperationen. Oto-Rhino-Laryngologia Nova. 1993;3(4):173–9.CrossRefGoogle Scholar
  34. 34.
    Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery. 1991;28(6):792–9. discussion 9-800CrossRefGoogle Scholar
  35. 35.
    Gellrich NC, Schramm A, Hammer B, Rojas S, Cufi D, Lagreze W, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg. 2002;110(6):1417–29.Google Scholar
  36. 36.
    Schramm A, Wilde F. Die computergestützte Gesichtsschädelrekonstruktion. HNO. 2011;59(8):800–6.CrossRefGoogle Scholar
  37. 37.
    Kokemuller H, von See C, Essig H, Tavassol F, Rucker M, Schramm A, et al. Reconstruction of complex midfacial defects with individualized titanium implants. HNO. 2011;59(4):319–26.CrossRefGoogle Scholar
  38. 38.
    Schmelzeisen R, Schramm A. Computer-assisted reconstruction of the facial skeleton. Arch Facial Plast Surg. 2003;5(5):437.CrossRefGoogle Scholar
  39. 39.
    Essig H, Dressel L, Rana M, Rana M, Kokemueller H, Ruecker M, et al. Precision of posttraumatic primary orbital reconstruction using individually bent titanium mesh with and without navigation: a retrospective study. Head Face Med. 2013;9(1):18.CrossRefGoogle Scholar
  40. 40.
    Rana M, Modrow D, Keuchel J, Chui C, Rana M, Wagner M, et al. Development and evaluation of an automatic tumor segmentation tool: a comparison between automatic, semi-automatic and manual segmentation of mandibular odontogenic cysts and tumors. J Craniomaxillofac Surg. 2014;43:355–9.CrossRefGoogle Scholar
  41. 41.
    Bell WH. Le Forte I osteotomy for correction of maxillary deformities. J Oral Surg. 1975;33(6):412–26.PubMedGoogle Scholar
  42. 42.
    Obwegeser H. The indications for surgical correction of mandibular deformity by the sagittal splitting technique. Br J Oral Surg. 1964;1:157–71.CrossRefGoogle Scholar
  43. 43.
    Zizelmann C, Hammer B, Gellrich NC, Schwestka-Polly R, Rana M, Bucher P. An evaluation of face-bow transfer for the planning of orthognathic surgery. J Oral Maxillofac Surg. 2012;70(8):1944–50.CrossRefGoogle Scholar
  44. 44.
    Xia JJ, Shevchenko L, Gateno J, Teichgraeber JF, Taylor TD, Lasky RE, et al. Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. J Oral Maxillofac Surg. 2011;69(7):2014–24.CrossRefGoogle Scholar
  45. 45.
    Schwestka-Polly R, Kubein-Meesenburg D, Luhr HG. Techniques for achieving three-dimensional positioning of the maxilla applied in conjunction with the Gottingen concept. Int J Adult Orthodon Orthognath Surg. 1998;13(3):248–58.PubMedGoogle Scholar
  46. 46.
    Helm G, Stepke MT. Maintenance of the preoperative condyle position in orthognathic surgery. J Craniomaxillofac Surg. 1997;25(1):34–8.CrossRefGoogle Scholar
  47. 47.
    Saka B, Petsch I, Hingst V, Härtel J. The influence of pre- and intraoperative positioning of the condyle in the centre of the articular fossa on the position of the disc in orthognathic surgery. A magnetic resonance study. Br J Oral Maxillofac Surg. 2004;42(2):120–6.CrossRefGoogle Scholar
  48. 48.
    Schwestka-Polly R, Kubein-Meesenburg D, Luhr HG. Results of the application of the Goettingen concept for three-dimensional repositioning of the maxilla in orthognathic surgery. Mund Kiefer Gesichtschir. 1999;3(3):123–30.CrossRefGoogle Scholar
  49. 49.
    Schwestka-Polly R. Fortschritte in der gelenkbezüglichen kieferorthopädisch-kieferchirurgischen Therapie. Inf Orthod Kieferorthop. 2004;36(04):205–18.CrossRefGoogle Scholar
  50. 50.
    Miller RJ, Bier J. Surgical navigation in oral implantology. Implant Dent. 2006;15(1):41–7.CrossRefGoogle Scholar
  51. 51.
    Miller RJ. Navigated surgery in oral implantology: a case study. Int J Med Robot. 2007;3(3):229–34.CrossRefGoogle Scholar
  52. 52.
    Hohlweg-Majert B, Schon R, Schmelzeisen R, Gellrich NC, Schramm A. Navigational maxillofacial surgery using virtual models. World J Surg. 2005;29(12):1530–8.CrossRefGoogle Scholar
  53. 53.
    Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111–24.CrossRefGoogle Scholar
  54. 54.
    Gaggl A, Schultes G, Karcher H. Navigational precision of drilling tools preventing damage to the mandibular canal. J Craniomaxillofac Surg. 2001;29(5):271–5.CrossRefGoogle Scholar
  55. 55.
    Nickenig HJ, Spiekermann H. CT/DVT-basierte implantatprothetische Führungsschablonen vs. traditionelle Orientierungsschablonen. Z Zahnärztl Implantol. 2006;22:272–80.Google Scholar
  56. 56.
    Cohnen M, Kemper J, Mobes O, Pawelzik J, Modder U. Radiation dose in dental radiology. Eur Radiol. 2002;12(3):634–7.CrossRefGoogle Scholar
  57. 57.
    Möbes O, Becker J, Schnelle C, Ewen K, Kemper J, Cohnen M. Strahlenexposition bei der digitalen Volumentomographiem, Panoramaschichtaufnahme und Computertomographie. Dtsch Zahnarztl Z. 2000;55:336–9.Google Scholar
  58. 58.
    Kokemüller H, See C, Essig H, Tavassol F, Rücker M, Schramm A, et al. Rekonstruktion komplexer Mittelgesichtsdefekte durch individualisierte Titanimplantate. HNO. 2011;59(4):319–26.CrossRefGoogle Scholar
  59. 59.
    Schramm A, Gellrich NC. Intraoperative Navigation und computerassistierte Chirurgie. In: Schwenzer N, editor. Mund-Kiefer-Gesichtschirurgie. Georg Thieme Verlag; Stuttgart, Germany. 2011.Google Scholar
  60. 60.
    Eckardt A, Swennen GR. Virtual planning of composite mandibular reconstruction with free fibula bone graft. J Craniofac Surg. 2005;16(6):1137–40.CrossRefGoogle Scholar
  61. 61.
    Rana M, Warraich R, Kokemuller H, Lemound J, Essig H, Tavassol F, et al. Reconstruction of mandibular defects – clinical retrospective research over a 10-year period. Head Neck Oncol. 2011;3:23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Oral & Craniomaxillofacial SurgeryHannover Medical SchoolHanoverGermany

Personalised recommendations