Skip to main content

Digital Planning in Pediatric Craniofacial Surgery

  • Chapter
  • First Online:
Digital Technologies in Craniomaxillofacial Surgery

Abstract

Pediatric craniofacial surgery requires complex reconstructions, with spatial repositioning of structures and compartments within the head and facial region. Radiologic and morphometric assessments have always been central to both preoperative planning and gauging postoperative results. With the advent of sophisticated, three-dimensional planning tools, the accuracy and reproducibility of challenging craniomaxillofacial reconstructions can be facilitated. In this chapter we outline current applications of computer-based planning utilized for pediatric craniofacial surgery. Example cases have been chosen to represent the scope of craniomaxillofacial reconstruction and implementation of 3D technology. These include:

  • Craniosynostosis (syndromic and non-syndromic)

  • Cranial defect or dysmorphology

  • Orbital repositioning or translocation

  • Mandibular reconstruction using free fibula flap

  • Mandibular distraction for micrognathia with airway obstruction (neonatal and in older children)

  • Orthognathic surgery

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2D::

Two-dimensional

3D::

Three-dimensional

CAD::

Computer-aided design

CAM::

Computer-aided manufacturing

CT::

Computed Tomography

DICOM::

Digital imaging and communications in medicine

HFM::

Hemifacial microsomia

VSP::

Virtual Surgical Planning

References

  1. Robiony M, Salvo I, Costa F, Zerman N, Bandera C, Filippi S, et al. Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning. J Craniofac Surg. 2008;19(2):482–9.

    Article  PubMed  Google Scholar 

  2. Schendel SA, Hazan-Molina H, Rachmiel A, Aizenbud D. The future in craniofacial surgery: computer-assisted planning. Rambam Maimonides Med J. 2012;3(2):e0012.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grauer D, Cevidanes LSH, Proffit WR. Working with DICOM craniofacial images. Am J Orthod Dentofac Orthop. 2009;136(3):460–70.

    Article  Google Scholar 

  4. Flores RL, Deluccia N, Grayson BH, Oliker A, McCarthy JG. Creating a virtual surgical atlas of craniofacial procedures: Part I. Three-dimensional digital models of craniofacial deformities. Plast Reconstr Surg. 2010;126(6):2084–92.

    Article  CAS  PubMed  Google Scholar 

  5. Flores RL, Deluccia N, Oliker A, McCarthy JG. Creating a virtual surgical atlas of craniofacial procedures: Part II. Surgical animations. Plast Reconstr Surg. 2010;126(6):2093–101.

    Article  CAS  PubMed  Google Scholar 

  6. Meehan M, Teschner M, Girod S. Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res. 2003;6(Suppl 1):102–7.

    Article  PubMed  Google Scholar 

  7. Rudman K, Hoekzema C, Rhee J. Computer-assisted innovations in craniofacial surgery. Facial Plast Surg FPS. 2011;27(4):358–65.

    Article  CAS  PubMed  Google Scholar 

  8. Markiewicz MR, Bell RB. The use of 3D imaging tools in facial plastic surgery. Facial Plast Surg Clin North Am. 2011;19(4):655–82.

    Article  PubMed  Google Scholar 

  9. Bell RB. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22(1):135–56.

    Article  PubMed  Google Scholar 

  10. Marsh JL, Vannier MW. Surface imaging from computerized tomographic scans. Surgery. 1983;94(2):159–65.

    PubMed  CAS  Google Scholar 

  11. Cutting C, Bookstein FL, Grayson B, Fellingham L, McCarthy JG. Three-dimensional computer-assisted design of craniofacial surgical procedures: optimization and interaction with cephalometric and CT-based models. Plast Reconstr Surg. 1986;77(6):877–87.

    Article  CAS  PubMed  Google Scholar 

  12. Cutting C, Grayson B, Bookstein F, Fellingham L, McCarthy JG. Computer-aided planning and evaluation of facial and orthognathic surgery. Clin Plast Surg. 1986;13(3):449–62.

    PubMed  CAS  Google Scholar 

  13. Vannier MW, Conroy GC, Marsh JL, Knapp RH. Three-dimensional cranial surface reconstructions using high-resolution computed tomography. Am J Phys Anthropol. 1985;67(4):299–311.

    Article  CAS  PubMed  Google Scholar 

  14. Marsh JL, Vannier MW, Stevens WG, Warren JO, Gayou D, Dye DM. Computerized imaging for soft tissue and osseous reconstruction in the head and neck. Clin Plast Surg. 1985;12(2):279–91.

    PubMed  CAS  Google Scholar 

  15. Vander Sloten J, Degryse K, Gobin R, Van der Perre G, Mommaerts MY. Interactive simulation of cranial surgery in a computer aided design environment. J Craniomaxillofac Surg. 1996;24(2):122–9.

    Article  CAS  PubMed  Google Scholar 

  16. Mommaerts MY, Jans G, Vander Sloten J, Staels PF, Van der Perre G, Gobin R. On the assets of CAD planning for craniosynostosis surgery. J Craniofac Surg. 2001;12(6):547–54.

    Article  CAS  PubMed  Google Scholar 

  17. Saber NR, Phillips J, Looi T, Usmani Z, Burge J, Drake J, et al. Generation of normative pediatric skull models for use in cranial vault remodeling procedures. Childs Nerv Syst. 2012;28(3):405–10.

    Article  PubMed  Google Scholar 

  18. Burge J, Saber NR, Looi T, French B, Usmani Z, Anooshiravani N, et al. Application of CAD/CAM prefabricated age-matched templates in cranio-orbital remodeling in craniosynostosis. J Craniofac Surg. 2011;22(5):1810–3.

    Article  PubMed  Google Scholar 

  19. Seruya M, Borsuk DE, Khalifian S, Carson BS, Dalesio NM, Dorafshar AH. Computer-aided design and manufacturing in craniosynostosis surgery. J Craniofac Surg. 2013;24(4):1100–5.

    Article  PubMed  Google Scholar 

  20. Mardini S, Alsubaie S, Cayci C, Chim H, Wetjen N. Three-dimensional preoperative virtual planning and template use for surgical correction of craniosynostosis. J Plast Reconstr Aesthet Surg. 2014;67(3):336–43.

    Article  PubMed  Google Scholar 

  21. Diluna ML, Steinbacher DM. Simulated fronto-orbital advancement achieves reproducible results in metopic synostosis. J Craniofac Surg. 2012;23(3):e231–4.

    Article  PubMed  Google Scholar 

  22. Shah A, Patel A, Steinbacher DM. Simulated frontoorbital advancement and intraoperative templates enhance reproducibility in craniosynostosis. Plast Reconstr Surg. 2012;129(6):1011e–2e.

    Article  CAS  PubMed  Google Scholar 

  23. Khechoyan DY, Saber NR, Burge J, Fattah A, Drake J, Forrest CR, et al. Surgical outcomes in craniosynostosis reconstruction: the use of prefabricated templates in cranial vault remodelling. J Plast Reconstr Aesthet Surg. 2014;67(1):9–16.

    Article  PubMed  Google Scholar 

  24. Ezaldein HH, Metzler P, Persing JA, Steinbacher DM. Three-dimensional orbital dysmorphology in metopic synostosis. J Plast Reconstr Aesthet Surg. 2014;67(7):900–5.

    Article  PubMed  Google Scholar 

  25. Metzler P, Ezaldein HH, Persing JA, Steinbacher DM. Comparing two fronto-orbital advancement strategies to treat trigonocephaly in metopic synostosis. J Craniomaxillofac Surg. 2014;42:1437–41.

    Article  PubMed  Google Scholar 

  26. Beckett JS, Persing JA, Steinbacher DM. Bilateral orbital dysmorphology in unicoronal synostosis. Plast Reconstr Surg. 2013;131(1):125–30.

    Article  CAS  PubMed  Google Scholar 

  27. Beckett JS, Chadha P, Persing JA, Steinbacher DM. Classification of trigonocephaly in metopic synostosis. Plast Reconstr Surg. 2012;130(3):442e–7e.

    Article  CAS  PubMed  Google Scholar 

  28. Pfaff MJ, Wong K, Persing JA, Steinbacher DM. Zygomatic dysmorphology in unicoronal synostosis. J Plast Reconstr Aesthet Surg. 2013;66(8):1096–102.

    Article  PubMed  Google Scholar 

  29. Steinbacher DM, Skirpan J, Puchała J, Bartlett SP. Expansion of the posterior cranial vault using distraction osteogenesis. Plast Reconstr Surg. 2011;127(2):792–801.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor JA, Derderian CA, Bartlett SP, Fiadjoe JE, Sussman EM, Stricker PA. Perioperative morbidity in posterior cranial vault expansion: distraction osteogenesis versus conventional osteotomy. Plast Reconstr Surg. 2012;129(4):674e–80e.

    Article  CAS  PubMed  Google Scholar 

  31. Marchac A, Arnaud E. Cranium and midface distraction osteogenesis: current practices, controversies, and future applications. J Craniofac Surg. 2012;23(1):235–8.

    Article  PubMed  Google Scholar 

  32. Choi M, Flores RL, Havlik RJ. Volumetric analysis of anterior versus posterior cranial vault expansion in patients with syndromic craniosynostosis. J Craniofac Surg. 2012;23(2):455–8.

    Article  PubMed  Google Scholar 

  33. Nowinski D, Di Rocco F, Renier D, SainteRose C, Leikola J, Arnaud E. Posterior cranial vault expansion in the treatment of craniosynostosis. Comparison of current techniques. Childs Nerv Syst. 2012;28(9):1537–44.

    Article  PubMed  Google Scholar 

  34. Derderian CA, Bastidas N, Bartlett SP. Posterior cranial vault expansion using distraction osteogenesis. Childs Nerv Syst. 2012;28(9):1551–6.

    Article  PubMed  Google Scholar 

  35. Satoh K, Mitsukawa N. Suitable indication for the application of distraction osteogenesis: occipital enlargement for lambdoid synostosis. J Craniofac Surg. 2013;24(5):1530–4.

    Article  PubMed  Google Scholar 

  36. Ylikontiola LP, Sándor GK, Salokorpi N, Serlo WS. Experience with craniosynostosis treatment using posterior cranial vault distraction osteogenesis. Ann Maxillofac Surg. 2012;2(1):4–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. White N, Evans M, Dover MS, Noons P, Solanki G, Nishikawa H. Posterior calvarial vault expansion using distraction osteogenesis. Childs Nerv Syst. 2009;25(2):231–6.

    Article  PubMed  Google Scholar 

  38. Nowinski D, Saiepour D, Leikola J, Messo E, Nilsson P, Enblad P. Posterior cranial vault expansion performed with rapid distraction and time-reduced consolidation in infants with syndromic craniosynostosis. Childs Nerv Syst. 2011;27(11):1999–2003.

    Article  PubMed  Google Scholar 

  39. De Jong T, van Veelen MLC, Mathijssen IMJ. Spring-assisted posterior vault expansion in multisuture craniosynostosis. Childs Nerv Syst. 2013;29(5):815–20.

    Article  PubMed  Google Scholar 

  40. Mulliken JB, Godwin SL, Pracharktam N, Altobelli DE. The concept of the sagittal orbital-globe relationship in craniofacial surgery. Plast Reconstr Surg. 1996;97(4):700–6.

    Article  CAS  PubMed  Google Scholar 

  41. Pai L, Kohout MP, Mulliken JB. Prospective anthropometric analysis of sagittal orbital-globe relationship following fronto-orbital advancement in childhood. Plast Reconstr Surg. 1999;103(5):1341–6.

    Article  CAS  PubMed  Google Scholar 

  42. Bender CA, Veneman W, Veenland JF, Mathijssen IMJ, Hop WCJ, Koudstaal MJ, et al. Orbital aspects following monobloc advancement in syndromic craniosynostosis. J Craniomaxillofac Surg. 2013;41(7):e146–53.

    Article  PubMed  Google Scholar 

  43. Jeelani NUO, Khan MA, Fitzgerald O’Connor EJ, Dunaway D, Hayward R. Frontofacial monobloc distraction using the StealthStation intraoperative navigation system: the ability to see where you are cutting. J Craniofac Surg. 2009;20(3):892–4.

    Article  PubMed  Google Scholar 

  44. Paige KT, Vega SJ, Kelly CP, Bartlett SP, Zakai E, Jawad AF, et al. Age-dependent closure of bony defects after frontal orbital advancement. Plast Reconstr Surg. 2006;118(4):977–84.

    Article  CAS  PubMed  Google Scholar 

  45. Dean D, Min K-J, Bond A. Computer aided design of large-format prefabricated cranial plates. J Craniofac Surg. 2003;14(6):819–32.

    Article  PubMed  Google Scholar 

  46. Winder J, Cooke RS, Gray J, Fannin T, Fegan T. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol. 1999;23(1):26–8.

    Article  CAS  PubMed  Google Scholar 

  47. Saringer W, Nöbauer-Huhmann I, Knosp E. Cranioplasty with individual carbon fibre reinforced polymer (CFRP) medical grade implants based on CAD/CAM technique. Acta Neurochir. 2002;144(11):1193–203.

    Article  CAS  PubMed  Google Scholar 

  48. Ono I, Tateshita T, Satou M, Sasaki T, Matsumoto M, Kodama N. Treatment of large complex cranial bone defects by using hydroxyapatite ceramic implants. Plast Reconstr Surg. 1999;104(2):339–49.

    Article  CAS  PubMed  Google Scholar 

  49. Eufinger H, Wehmöller M. Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstr Surg. 1998;102(2):300–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hanasono MM, Goel N, DeMonte F. Calvarial reconstruction with polyetheretherketone implants. Ann Plast Surg. 2009;62(6):653–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bricolo A, Benati A, Bazzan A. Cranioplasty with acrylic resin, with heavy stainless steel mesh and with fragments of theca. Minerva Neurochir. 1967;11(3):208–11.

    PubMed  CAS  Google Scholar 

  52. Cohen AJ, Dickerman RD, Schneider SJ. New method of pediatric cranioplasty for skull defect utilizing polylactic acid absorbable plates and carbonated apatite bone cement. J Craniofac Surg. 2004;15(3):469–72.

    Article  PubMed  Google Scholar 

  53. Biskup NI, Singh DJ, Beals S, Joganic EF, Manwaring K. Pediatric cranial vault defects: early experience with beta-tricalcium phosphate bone graft substitute. J Craniofac Surg. 2010;21(2):358–62.

    Article  PubMed  Google Scholar 

  54. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  Google Scholar 

  55. Chim H, Schantz J-T. New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty. Plast Reconstr Surg. 2005;116(6):1726–41.

    Article  CAS  PubMed  Google Scholar 

  56. Jarrahy R. Controversies in the management of neonatal micrognathia: to distract or not to distract, that is the question. J Craniofac Surg. 2012;23(1):243–9.

    Article  PubMed  Google Scholar 

  57. D’Hauthuille C, Taha F, Devauchelle B, Testelin S. Comparison of two computer-assisted surgery techniques to guide a mandibular distraction osteogenesis procedure. Technical note. Int J Oral Maxillofac Surg. 2005;34(2):197–201.

    Article  PubMed  Google Scholar 

  58. Rachmiel A, Srouji S, Emodi O, Aizenbud D. Distraction osteogenesis for tracheostomy dependent children with severe micrognathia. J Craniofac Surg. 2012;23(2):459–63.

    Article  PubMed  Google Scholar 

  59. McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992;89(1):1–8. discussion 9–10.

    Article  CAS  PubMed  Google Scholar 

  60. Nagy K, Kuijpers-Jagtman AM, Mommaerts MY. No evidence for long-term effectiveness of early osteodistraction in hemifacial microsomia. Plast Reconstr Surg. 2009;124(6):2061–71.

    Article  CAS  PubMed  Google Scholar 

  61. Suh J, Choi TH, Baek S-H, Kim JC, Kim S. Mandibular distraction in unilateral craniofacial microsomia: longitudinal results until the completion of growth. Plast Reconstr Surg. 2013;132(5):1244–52.

    Article  CAS  PubMed  Google Scholar 

  62. Ascenço ASK, Balbinot P, Junior IM, D’Oro U, Busato L, da Silva Freitas R. Mandibular distraction in hemifacial microsomia is not a permanent treatment: a long-term evaluation. J Craniofac Surg. 2014;25(2):352–4.

    Article  PubMed  Google Scholar 

  63. Pluijmers BI, Caron CJJM, Dunaway DJ, Wolvius EB, Koudstaal MJ. Mandibular reconstruction in the growing patient with unilateral craniofacial microsomia: a systematic review. Int J Oral Maxillofac Surg. 2014;43(3):286–95.

    Article  CAS  PubMed  Google Scholar 

  64. Khetani MA, Collett BR, Speltz ML, Werler MM. Health-related quality of life in children with hemifacial microsomia: parent and child perspectives. J Dev Behav Pediatr. 2013;34(9):661–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen Y, Niu F, Yu B, Liu J, Wang M, Gui L. Three-dimensional preoperative design of distraction osteogenesis for hemifacial microsomia. J Craniofac Surg. 2014;25(1):184–8.

    Article  PubMed  Google Scholar 

  66. Paeng J-Y, Lee J-H, Lee J-H, Kim M-J. Condyle as the point of rotation for 3-D planning of distraction osteogenesis for hemifacial microsomia. J Craniomaxillofac Surg. 2007;35(2):91–102.

    Article  PubMed  Google Scholar 

  67. Sun H, Li B, Zhao Z, Zhang L, Shen SGF, Wang X. Error analysis of a CAD/CAM method for unidirectional mandibular distraction osteogenesis in the treatment of hemifacial microsomia. Br J Oral Maxillofac Surg. 2013;51(8):892–7.

    Article  PubMed  Google Scholar 

  68. Ducic Y, Young L. Improving aesthetic outcomes in pediatric free tissue oromandibular reconstruction. Arch Facial Plast Surg. 2011;13(3):180–4.

    Article  PubMed  Google Scholar 

  69. Stirling Craig E, Yuhasz M, Shah A, Blumberg J, Salomon J, Lowlicht R, et al. Simulated surgery and cutting guides enhance spatial positioning in free fibular mandibular reconstruction. Microsurgery. 2014;35:29–33.

    Article  PubMed  Google Scholar 

  70. Liu X, Gui L, Mao C, Peng X, Yu G. Applying computer techniques in maxillofacial reconstruction using a fibula flap: a messenger and an evaluation method. J Craniofac Surg. 2009;20(2):372–7.

    Article  PubMed  Google Scholar 

  71. Schepers RH, Raghoebar GM, Vissink A, Lahoda LU, Van der Meer WJ, Roodenburg JL, et al. Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck. 2013;35(4):E109–14.

    Article  PubMed  Google Scholar 

  72. Freudlsperger C, Bodem JP, Engel E, Hoffmann J. Mandibular reconstruction with a prefabricated free vascularized fibula and implant-supported prosthesis based on fully three-dimensional virtual planning. J Craniofac Surg. 2014;25(3):980–2.

    Article  PubMed  Google Scholar 

  73. Metzger MC, Hohlweg-Majert B, Schwarz U, Teschner M, Hammer B, Schmelzeisen R. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(2):e1–7.

    Article  PubMed  Google Scholar 

  74. Choi J-Y, Song K-G, Baek S-H. Virtual model surgery and wafer fabrication for orthognathic surgery. Int J Oral Maxillofac Surg. 2009;38(12):1306–10.

    Article  PubMed  Google Scholar 

  75. Aboul-Hosn Centenero S, Hernández-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases. J Craniomaxillofac Surg. 2012;40(2):162–8.

    Article  PubMed  Google Scholar 

  76. Sun Y, Luebbers H-T, Agbaje JO, Schepers S, Vrielinck L, Lambrichts I, et al. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery. J Craniofac Surg. 2013;24(6):1871–6.

    Article  PubMed  Google Scholar 

  77. Tsuji M, Noguchi N, Shigematsu M, Yamashita Y, Ihara K, Shikimori M, et al. A new navigation system based on cephalograms and dental casts for oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 2006;35(9):828–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek M. Steinbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haber, S.E., Patel, A., Steinbacher, D.M. (2018). Digital Planning in Pediatric Craniofacial Surgery. In: Greenberg, A. (eds) Digital Technologies in Craniomaxillofacial Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1532-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1532-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1531-6

  • Online ISBN: 978-1-4939-1532-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics