Cranioplasty: Development and Clinical Use in Neurosurgery

  • Kyle J. Riley
  • Anthony B. Costa
  • Joshua B. Bederson
  • Raj Shrivastava
Chapter

Abstract

Cranioplasty has evolved a great deal in the last few years. With the advent of newer technology, all aspects of cranioplasty - planning, materials, and production - have improved. Today, neurosurgeons can repair increasingly complex cranial defects. Recent studies have focused on both surgical-specific factors, such as procedure timing and materials, and patient-specific factors, like age and medical conditions, to reduce the complication rate. This chapter provides a brief overview of the history of cranioplasty, a variety of the common materials and technologies used today, a number of clinical considerations, and some of the exciting ongoing research.

Keywords

Cranioplasty 3D modeling Biological materials Neurosurgery innovation Surgical implants 

References

  1. 1.
    Goldstein JA, Paliga JT, Bartlett SP. Cranioplasty: indications and advances. Curr Opin Otolaryngol Head Neck Surg. 2013;21(4):400–9.CrossRefGoogle Scholar
  2. 2.
    Paredes I, Castano-Leon AM, Munarriz PM, Martinez-Perez R, Cepeda S, Sanz R, et al. Cranioplasty after decompressive craniectomy. A prospective series analyzing complications and clinical improvement. Neurocirugia (Astur). 2015;26(3):115–25.CrossRefGoogle Scholar
  3. 3.
    Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19.CrossRefGoogle Scholar
  4. 4.
    Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997;40(3):588–603.PubMedGoogle Scholar
  5. 5.
    Feroze AH, Walmsley GG, Choudhri O, Lorenz HP, Grant GA, Edwards MS. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J Neurosurg. 2015;123(4):1098–107.CrossRefGoogle Scholar
  6. 6.
    Harris DA, Fong AJ, Buchanan EP, Monson L, Khechoyan D, Lam S. History of synthetic materials in alloplastic cranioplasty. Neurosurg Focus. 2014;36(4):E20.CrossRefGoogle Scholar
  7. 7.
    Bonfield CM, Kumar AR, Gerszten PC. The history of military cranioplasty. Neurosurg Focus. 2014;36(4):E18.CrossRefGoogle Scholar
  8. 8.
    Aydin S, Kucukyuruk B, Abuzayed B, Aydin S, Sanus GZ. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract. 2011;2(2):162–7.CrossRefGoogle Scholar
  9. 9.
    Bonda DJ, Manjila S, Selman WR, Dean D. The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions. Neurosurgery. 2015;77(5):814–24. discussion 24CrossRefGoogle Scholar
  10. 10.
    Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery – ready for prime time? World Neurosurg. 2013;80(3–4):233–5.CrossRefGoogle Scholar
  11. 11.
    Tan ET, Ling JM, Dinesh SK. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg. 2015;124(5):1531–7.CrossRefGoogle Scholar
  12. 12.
    Kim BJ, Hong KS, Park KJ, Park DH, Chung YG, Kang SH. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc. 2012;52(6):541–6.CrossRefGoogle Scholar
  13. 13.
    Gilardino MS, Karunanayake M, Al-Humsi T, Izadpanah A, Al-Ajmi H, Marcoux J, et al. A comparison and cost analysis of cranioplasty techniques: autologous bone versus custom computer-generated implants. J Craniofac Surg. 2015;26(1):113–7.CrossRefGoogle Scholar
  14. 14.
    Lethaus B, Bloebaum M, Essers B, ter Laak MP, Steiner T, Kessler P. Patient-specific implants compared with stored bone grafts for patients with interval cranioplasty. J Craniofac Surg. 2014;25(1):206–9.CrossRefGoogle Scholar
  15. 15.
    Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg. 2014;120(2):489–92.CrossRefGoogle Scholar
  16. 16.
    Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.CrossRefGoogle Scholar
  17. 17.
    Liew Y, Beveridge E, Demetriades AK, Hughes MA. 3D printing of patient-specific anatomy: a tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg. 2015;29(5):712–4.CrossRefGoogle Scholar
  18. 18.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41.CrossRefGoogle Scholar
  19. 19.
    Bradski G. The OpenCV library. Dr Dobb’s Journal of Software Tools. 2000;25(11):120, 2–5.Google Scholar
  20. 20.
    Taubin G, editor. Curve and surface smoothing without shrinkage. Fifth International Conference on Computer Vision (ICCV ‘95); Conference was June 20–23, 1995 Massachusetts Institue of Technology, Cambridge, Massachusetts.Google Scholar
  21. 21.
    Ng ZY, Nawaz I. Computer-designed PEEK implants: a peek into the future of cranioplasty? J Craniofac Surg. 2014;25(1):e55–8.CrossRefGoogle Scholar
  22. 22.
    Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83(5):708–14.CrossRefGoogle Scholar
  23. 23.
    Schoekler B, Trummer M. Prediction parameters of bone flap resorption following cranioplasty with autologous bone. Clin Neurol Neurosurg. 2014;120:64–7.CrossRefGoogle Scholar
  24. 24.
    Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ. Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr. 2012;10(4):268–72.CrossRefGoogle Scholar
  25. 25.
    Broughton E, Pobereskin L, Whitfield PC. Seven years of cranioplasty in a regional neurosurgical centre. Br J Neurosurg. 2014;28(1):34–9.CrossRefGoogle Scholar
  26. 26.
    Morton RP, Abecassis IJ, Hanson JF, Barber J, Nerva JD, Emerson SN, et al. Predictors of infection after 754 cranioplasty operations and the value of intraoperative cultures for cryopreserved bone flaps. J Neurosurg. 2016;125(3):766–70.CrossRefGoogle Scholar
  27. 27.
    Zanaty M, Chalouhi N, Starke RM, Clark SW, Bovenzi CD, Saigh M, et al. Complications following cranioplasty: incidence and predictors in 348 cases. J Neurosurg. 2015;123(1):182–8.CrossRefGoogle Scholar
  28. 28.
    Iaccarino C, Viaroli E, Fricia M, Serchi E, Poli T, Servadei F. Preliminary results of a prospective study on methods of cranial reconstruction. J Oral Maxillofac Surg. 2015;73(12):2375–8.CrossRefGoogle Scholar
  29. 29.
    Yadla S, Campbell PG, Chitale R, Maltenfort MG, Jabbour P, Sharan AD. Effect of early surgery, material, and method of flap preservation on cranioplasty infections: a systematic review. Neurosurgery. 2011;68(4):1124–9. Discussion 30CrossRefGoogle Scholar
  30. 30.
    Reddy S, Khalifian S, Flores JM, Bellamy J, Manson PN, Rodriguez ED, et al. Clinical outcomes in cranioplasty: risk factors and choice of reconstructive material. Plast Reconstr Surg. 2014;133(4):864–73.CrossRefGoogle Scholar
  31. 31.
    Tseng CL, Chang GW, Ou KL, Chou WT, Wu TH, Fang HW, et al. Cranioplasty using a novel osteoconductive scaffold and platelet gel. Ann Plast Surg. 2016;76(Suppl 1):S125–9.CrossRefGoogle Scholar
  32. 32.
    Smith DM, Cooper GM, Afifi AM, Mooney MP, Cray J, Rubin JP, et al. Regenerative surgery in cranioplasty revisited: the role of adipose-derived stem cells and BMP-2. Plast Reconstr Surg. 2011;128(5):1053–60.CrossRefGoogle Scholar
  33. 33.
    Cray J Jr, Henderson SE, Smith DM, Kinsella CR Jr, Bykowski M, Cooper GM, et al. BMP-2-regenerated calvarial bone: a biomechanical appraisal in a large animal model. Ann Plast Surg. 2014;73(5):591–7.CrossRefGoogle Scholar
  34. 34.
    Smith DM, Cray JJ Jr, Weiss LE, Dai Fei EK, Shakir S, Rottgers SA, et al. Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting. Ann Plast Surg. 2012;69(4):485–8.CrossRefGoogle Scholar
  35. 35.
    Phillips MD, Kuznetsov SA, Cherman N, Park K, Chen KG, McClendon BN, et al. Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays. Stem Cells Transl Med. 2014;3(7):867–78.CrossRefGoogle Scholar
  36. 36.
    Levi B, Hyun JS, Montoro DT, Lo DD, Chan CK, Hu S, et al. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci U S A. 2012;109(50):20379–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kyle J. Riley
    • 1
  • Anthony B. Costa
    • 2
  • Joshua B. Bederson
    • 2
  • Raj Shrivastava
    • 2
  1. 1.Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of NeurosurgeryThe Mount Sinai Hospital, Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations