Bacterial Infections and Vaccines

  • Saeeda Bobat
  • Adam F. CunninghamEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 828)


We are exposed to multiple pathogens in our lifetime that can localize to body surfaces, spread systemically or both. The characteristics of an individual pathogen influences the type of effective immunity required to control it. For instance, to control helminth infections a pre-dominantly Th2 response is required, whereas control of intracellular pathogens such as Salmonella largely requires a Th1 response. Therefore, upon infection the host mounts an immune response tailored to the given pathogen. The nature and persistence of this response is predictive of the host’s ability to control the infection. Nevertheless, the accumulated impact of exposure to multiple pathogens and the subsequent impact of related activity can have a marked impact on immune homeostasis and function, to the point where the host can have increased susceptibility to additional unrelated infections. This altered immune homeostasis can be due to a combination of one or more factors that include: (i) perturbed barrier function; (ii) ineffective immune cell generation; (iii) defective immune cell trafficking; (iv) inappropriate adaptive cell polarization and (v) impaired cell function. Whichever of these apply, ultimately the impact on the host is often expressed as impaired control of an invading pathogen. Despite the impact multiple infections can have on the host, the relationship between infectious history and immune function after infection and vaccination remains understudied, even though they have a staggering social and economic impact. The reasons for this are manifold but include the importance of studying the infectious process of a single pathogen, the availability of appropriate tools and model organisms to uncover mechanisms. As our understanding of infections caused by individual pathogens increases, it is possible to broaden our focus to look at how distinct infections interact. In this chapter we wish to highlight some advances in our understanding of how infectious history can influence immunity to unrelated pathogens. For this we have focused on the influence of helminths on bacterial infections and immunity to vaccination.


Bacteria Helminths Vaccines Immuno-modulation Co-infection Antibody 


  1. 1.
    Hesseling AC, Cotton MF, Jennings T, Whitelaw A, Johnson LF, Eley B, Roux P, Godfrey-Faussett P, Schaaf HS (2009) High incidence of tuberculosis among HIV-infected infants: evidence from a South African population-based study highlights the need for improved tuberculosis control strategies. Clin Infect Dis 48:108–114PubMedGoogle Scholar
  2. 2.
    Pillay T, Adhikari M, Mokili J, Moodley D, Connolly C, Doorasamy T, Coovadia HM (2001) Severe, rapidly progressive human immunodeficiency virus type 1 disease in newborns with coinfections. Pediatric Infect Dis J 20:404–410Google Scholar
  3. 3.
    Wiseman CA, Schaaf HS, Cotton MF, Gie RP, Jennings T, Whitelaw A, Roux P, Hesseling AC (2011) Bacteriologically confirmed tuberculosis in HIV-infected infants: disease spectrum and survival. Int J Tuberc Lung Dis 15:770–775PubMedGoogle Scholar
  4. 4.
    Abrahams A (1919) Discussion on influenza. Proc R Soc Med 12:97–102PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bassetti M, Parisini A, Calzi A, Pallavicini FM, Cassola G, Artioli S, Anselmo M, Pagano G, Rezza G, Viscoli C, Ligurian HNCG (2011) Risk factors for severe complications of the novel influenza A (H1N1): analysis of patients hospitalized in Italy. Clin Microbiol Infect 17:247–250PubMedGoogle Scholar
  6. 6.
    Iverson AR, Boyd KL, McAuley JL, Plano LR, Hart ME, McCullers JA (2011) Influenza virus primes mice for pneumonia from Staphylococcus aureus. J Infect Dis 203:880–888PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mauad T, Hajjar LA, Callegari GD, da Silva LF, Schout D, Galas FR, Alves VA, Malheiros DM, Auler JO Jr, Ferreira AF et al (2010) Lung pathology in fatal novel human influenza A (H1N1) infection. Am J Resp Crit Care Med 181:72–79PubMedGoogle Scholar
  8. 8.
    Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, Kauppila J, Leinonen M, McCracken GH Jr (2004) Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics 113:701–707PubMedGoogle Scholar
  9. 9.
    Muir R, Wilson GH (1919) Observations on influenza and its complications. Br Med J 1:3–5PubMedPubMedCentralGoogle Scholar
  10. 10.
    McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19:571–582PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cunnington AJ, de Souza JB, Walther M, Riley EM (2012) Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat Med 18:120–127Google Scholar
  12. 12.
    Cooper PJ (2004) Intestinal worms and human allergy. Parasite Immunol 26:455–467PubMedGoogle Scholar
  13. 13.
    Schaub B, Lauener R, von Mutius E (2006) The many faces of the hygiene hypothesis. J Allergy Clin Immunol 117:969–977 (quiz 978)PubMedGoogle Scholar
  14. 14.
    Smits HH, Everts B, Hartgers FC, Yazdanbakhsh M (2010) Chronic helminth infections protect against allergic diseases by active regulatory processes. Curr Allergy Asthma Rep 10:3–12PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hotez PJ, Kamath A (2009) Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 3:e412PubMedPubMedCentralGoogle Scholar
  16. 16.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241PubMedGoogle Scholar
  17. 17.
    Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Russmann H, Hardt WD (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immunity 71:2839–2858Google Scholar
  18. 18.
    Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, Grencis RK (2010) Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 328:1391–1394PubMedPubMedCentralGoogle Scholar
  19. 19.
    Peltola VT, McCullers JA (2004) Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatric Infect Dis J 23:S87–97Google Scholar
  20. 20.
    Sousa-Figueiredo JC, Basanez MG, Mgeni AF, Khamis IS, Rollinson D, Stothard JR (2008) A parasitological survey, in rural Zanzibar, of pre-school children and their mothers for urinary schistosomiasis, soil-transmitted helminthiases and malaria, with observations on the prevalence of anaemia. Ann Tropical Med Parasitol 102:679–692Google Scholar
  21. 21.
    Worku N, Erko B, Torben W, Belay M, Kasssu A, Fetene T, Huruy K (2009) Malnutrition and intestinal parasitic infections in school children of Gondar, North West Ethiopia. Ethiopian Med J 47:9–16Google Scholar
  22. 22.
    Hesham MS, Edariah AB, Norhayati M (2004) Intestinal parasitic infections and micronutrient deficiency: a review. Med J Malaysia 59:284–293PubMedGoogle Scholar
  23. 23.
    Long KZ, Estrada-Garcia T, Rosado JL, Ignacio Santos J, Haas M, Firestone M, Bhagwat J, Young C, DuPont HL, Hertzmark E, Nanthakumar NN (2006a). The effect of vitamin A supplementation on the intestinal immune response in Mexican children is modified by pathogen infections and diarrhea. J Nutrit 136:1365–1370Google Scholar
  24. 24.
    Long KZ, Santos JI, Rosado JL, Lopez-Saucedo C, Thompson-Bonilla R, Abonce M, DuPont HL, Hertzmark E, Estrada-Garcia T (2006b). Impact of vitamin A on selected gastrointestinal pathogen infections and associated diarrheal episodes among children in Mexico City, Mexico. J Infect Dis 194:1217–1225Google Scholar
  25. 25.
    Payne LG, Koski KG, Ortega-Barria E, Scott ME (2007) Benefit of vitamin A supplementation on ascaris reinfection is less evident in stunted children. J Nutrit 137:1455–1459PubMedGoogle Scholar
  26. 26.
    Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T, Johansson-Lindbom B, Agace WW, Parker CM, Powrie F (2005) Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051–1061PubMedPubMedCentralGoogle Scholar
  27. 27.
    Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205:2139–2149PubMedPubMedCentralGoogle Scholar
  28. 28.
    Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Forster R, Agace WW (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063–1073PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206:3101–3114PubMedPubMedCentralGoogle Scholar
  30. 30.
    Svensson M, Johansson-Lindbom B, Zapata F, Jaensson E, Austenaa LM, Blomhoff R, Agace WW (2008) Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol 1:38–48PubMedGoogle Scholar
  31. 31.
    Flores-Langarica A, Marshall JL, Hitchcock J, Cook C, Jobanputra J, Bobat S, Ross EA, Coughlan RE, Henderson IR, Uematsu S et al (2012) Systemic flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T cell and IgA responses in the mesenteric lymph node. J Immunol 189:5745–5754PubMedGoogle Scholar
  32. 32.
    de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L (2003) Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 19:547–551PubMedGoogle Scholar
  33. 33.
    Bancroft AJ, McKenzie AN, Grencis RK (1998) A critical role for IL-13 in resistance to intestinal nematode infection. J Immunol 160:3453–3461PubMedGoogle Scholar
  34. 34.
    Mahanty S, Day KP, Alpers MP, Kazura JW (1994) Antifilarial IgG4 antibodies in children from filaria-endemic areas correlate with duration of infection and are dissociated from antifilarial IgE antibodies. J Infect Dis 170:1339–1343PubMedGoogle Scholar
  35. 35.
    Mahanty S, King CL, Kumaraswami V, Regunathan J, Maya A, Jayaraman K, Abrams JS, Ottesen EA, Nutman TB (1993) IL-4- and IL-5-secreting lymphocyte populations are preferentially stimulated by parasite-derived antigens in human tissue invasive nematode infections. J Immunol 151:3704–3711PubMedGoogle Scholar
  36. 36.
    Turner JD, Faulkner H, Kamgno J, Cormont F, Van Snick J, Else KJ, Grencis RK, Behnke JM, Boussinesq M, Bradley JE (2003) Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J Infect Dis 188:1768–1775PubMedGoogle Scholar
  37. 37.
    Urban JF Jr, Katona IM, Paul WE, Finkelman FD (1991) Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci U S A 88:5513–5517PubMedPubMedCentralGoogle Scholar
  38. 38.
    Urban JF Jr, Noben-Trauth N, Donaldson DD, Madden KB, Morris SC, Collins M, Finkelman FD (1998) IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8:255–264PubMedGoogle Scholar
  39. 39.
    Horsnell WG, Cutler AJ, Hoving JC, Mearns H, Myburgh E, Arendse B, Finkelman FD, Owens GK, Erle D, Brombacher F (2007) Delayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMC-specific IL-4Ralpha-deficient mice. PLoS pathog 3:e1PubMedPubMedCentralGoogle Scholar
  40. 40.
    Madden KB, Whitman L, Sullivan C, Gause WC, Urban JF Jr, Katona IM, Finkelman FD, Shea-Donohue T (2002) Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. J Immunol 169:4417–4422PubMedGoogle Scholar
  41. 41.
    Shea-Donohue T, Sullivan C, Finkelman FD, Madden KB, Morris SC, Goldhill J, Pineiro-Carrero V, Urban JF Jr (2001) The role of IL-4 in Heligmosomoides polygyrus-induced alterations in murine intestinal epithelial cell function. J Immunol 167:2234–2239PubMedGoogle Scholar
  42. 42.
    Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, Knight PA, Donaldson DD, Lazar MA, Miller HR et al (2004) RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A 101:13596–13600PubMedPubMedCentralGoogle Scholar
  43. 43.
    Khan WI, Collins SM (2004) Immune-mediated alteration in gut physiology and its role in host defence in nematode infection. Parasite Immunol 26:319–326PubMedGoogle Scholar
  44. 44.
    Khan WI, Motomura Y, Blennerhassett PA, Kanbayashi H, Varghese AK, El-Sharkawy RT, Gauldie J, Collins SM (2005) Disruption of CD40-CD40 ligand pathway inhibits the development of intestinal muscle hypercontractility and protective immunity in nematode infection. Am J Physiol Gastrointest Liver Physiol 288:G15–22Google Scholar
  45. 45.
    Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J (1987) Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci U S A 84:2975–2979PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhao A, McDermott J, Urban JF Jr, Gause W, Madden KB, Yeung KA, Morris SC, Finkelman FD, Shea-Donohue T (2003) Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. J Immunol 171:948–954PubMedGoogle Scholar
  47. 47.
    Lee DL, Biggs WD (1990) Two- and three-dimensional locomotion of the nematode Nippostrongylus brasiliensis. Parasitology 101(Pt 2):301–308PubMedGoogle Scholar
  48. 48.
    Rothwell TL (1989) Immune expulsion of parasitic nematodes from the alimentary tract. Int J Parasitol 19:139–168PubMedGoogle Scholar
  49. 49.
    Khan WI, Blennerhasset P, Ma C, Matthaei KI, Collins SM (2001a). Stat6 dependent goblet cell hyperplasia during intestinal nematode infection. Parasite Immunol 23:39–42Google Scholar
  50. 50.
    Khan WI, Vallance BA, Blennerhassett PA, Deng Y, Verdu EF, Matthaei KI, Collins SM (2001b). Critical role for signal transducer and activator of transcription factor 6 in mediating intestinal muscle hypercontractility and worm expulsion in Trichinella spiralis-infected mice. Infect Immunity 69:838–844Google Scholar
  51. 51.
    McKenzie GJ, Bancroft A, Grencis RK, McKenzie AN (1998) A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr Biol 8:339–342PubMedGoogle Scholar
  52. 52.
    McKenzie GJ, Fallon PG, Emson CL, Grencis RK, McKenzie AN (1999) Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J Exp Med 189:1565–1572PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111:677-690; (quiz 691)PubMedGoogle Scholar
  54. 54.
    Harris NL, Spoerri I, Schopfer JF, Nembrini C, Merky P, Massacand J, Urban JF Jr, Lamarre A, Burki K, Odermatt B et al (2006) Mechanisms of neonatal mucosal antibody protection. J Immunol 177:6256–6262PubMedGoogle Scholar
  55. 55.
    Ahmad A, Wang CH, Bell RG (1991) A role for IgE in intestinal immunity. Expression of rapid expulsion of Trichinella spiralis in rats transfused with IgE and thoracic duct lymphocytes. J Immunol 146:3563–3570PubMedGoogle Scholar
  56. 56.
    Dunne DW, Butterworth AE, Fulford AJ, Kariuki HC, Langley JG, Ouma JH, Capron A, Pierce RJ, Sturrock RF (1992) Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. Eur J Immunol 22:1483–1494PubMedGoogle Scholar
  57. 57.
    Jarrett E, Bazin H (1974) Elevation of total serum IgE in rats following helminth parasite infection. Nature 251:613–614PubMedGoogle Scholar
  58. 58.
    Lobos E, Nutman TB, Hothersall JS, Moncada S (2003) Elevated immunoglobulin E against recombinant Brugia malayi gamma-glutamyl transpeptidase in patients with bancroftian filariasis: association with tropical pulmonary eosinophilia or putative immunity. Infect Immun 71:747–753PubMedPubMedCentralGoogle Scholar
  59. 59.
    Hussain R, Poindexter RW, Ottesen EA, Reimer CB (1986) Use of monoclonal antibodies to quantify subclasses of human IgG. II. Enzyme immunoassay to define antigen specific (anti-filarial) IgG subclass antibodies. J Immunol Methods 94:73–80PubMedGoogle Scholar
  60. 60.
    Ottesen EA, Kumaraswami V, Paranjape R, Poindexter RW, Tripathy SP (1981) Naturally occurring blocking antibodies modulate immediate hypersensitivity responses in human filariasis. J Immunol 127:2014–2020PubMedGoogle Scholar
  61. 61.
    van der Neut Kolfschoten M, Schuurman, Aarden LA et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557PubMedGoogle Scholar
  62. 62.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Ann Rev Immunol 17:593–623Google Scholar
  63. 63.
    Loke P, MacDonald AS, Robb A, Maizels RM, Allen JE (2000) Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur J Immunol 30:2669–2678PubMedGoogle Scholar
  64. 64.
    Rodriguez-Sosa M, Satoskar AR, Calderon R, Gomez-Garcia L, Saavedra R, Bojalil R, Terrazas LI (2002) Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect Immun 70:3656–3664PubMedPubMedCentralGoogle Scholar
  65. 65.
    Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10:137–142PubMedGoogle Scholar
  66. 66.
    Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, Hakiy N, Klemke CD, Dippel E, Kodelja V, Orfanos CE (1999) Alternative versus classical activation of macrophages. Pathobiology 67:222–226PubMedGoogle Scholar
  67. 67.
    Herbert DR, Holscher C, Mohrs M, Arendse B, Schwegmann A, Radwanska M, Leeto M, Kirsch R, Hall P, Mossmann H et al (2004) Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20:623–635PubMedGoogle Scholar
  68. 68.
    Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, Maizels RM, Allen JE (2005) Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun 73:385–394PubMedPubMedCentralGoogle Scholar
  69. 69.
    Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA (2003) Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 171:3655–3667PubMedGoogle Scholar
  70. 70.
    Mylonas KJ, Nair MG, Prieto-Lafuente L, Paape D, Allen JE (2009) Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J Immunol 182:3084–3094PubMedGoogle Scholar
  71. 71.
    Varin A, Mukhopadhyay S, Herbein G, Gordon S (2010) Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115:353–362PubMedPubMedCentralGoogle Scholar
  72. 72.
    Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015PubMedGoogle Scholar
  73. 73.
    Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB (1996) Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271:64–67PubMedPubMedCentralGoogle Scholar
  74. 74.
    Hess J, Ladel C, Miko D, Kaufmann SH (1996) Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156:3321–3326PubMedGoogle Scholar
  75. 75.
    Mastroeni P, Villarreal-Ramos B, Hormaeche CE (1992) Role of T cells, TNF alpha and IFN gamma in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro- Salmonella vaccines. Microb Pathog 13:477–491PubMedGoogle Scholar
  76. 76.
    Pie S, Truffa-Bachi P, Pla M, Nauciel C (1997) Th1 response in Salmonella typhimurium-infected mice with a high or low rate of bacterial clearance. Infect Immun 65:4509–4514PubMedPubMedCentralGoogle Scholar
  77. 77.
    Geddes K, Rubino SJ, Magalhaes JG, Streutker C, Le Bourhis L, Cho JH, Robertson SJ, Kim CJ, Kaul R, Philpott DJ, Girardin SE (2011) Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 17:837–844PubMedGoogle Scholar
  78. 78.
    Cunningham AF, Gaspal F, Serre K, Mohr E, Henderson IR, Scott-Tucker A, Kenny SM, Khan M, Toellner KM, Lane PJ, MacLennan IC (2007) Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J Immunol 178:6200–6207PubMedGoogle Scholar
  79. 79.
    Mastroeni P, Villarreal-Ramos B, Hormaeche CE (1993) Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect Immun 61:3981–3984PubMedPubMedCentralGoogle Scholar
  80. 80.
    McSorley SJ, Jenkins MK (2000) Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar typhimurium. Infect Immun 68:3344–3348PubMedPubMedCentralGoogle Scholar
  81. 81.
    Briles DE, Hollingshead SK, King J, Swift A, Braun PA, Park MK, Ferguson LM, Nahm MH, Nabors GS (2000) Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis 182:1694–1701PubMedGoogle Scholar
  82. 82.
    Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, Kolls JK, Srivastava A, Lundgren A, Forte S et al (2008) Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathogens 4:e1000159PubMedPubMedCentralGoogle Scholar
  83. 83.
    Malley R, Lipsitch M, Bogaert D, Thompson CM, Hermans P, Watkins AC, Sethi S, Murphy TF (2007) Serum antipneumococcal antibodies and pneumococcal colonization in adults with chronic obstructive pulmonary disease. J Infect Dis 196:928–935PubMedGoogle Scholar
  84. 84.
    Malley R, Srivastava A, Lipsitch M, Thompson CM, Watkins C, Tzianabos A, Anderson PW (2006) Antibody-independent, interleukin-17A-mediated, cross-serotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect Immun 74:2187–2195PubMedPubMedCentralGoogle Scholar
  85. 85.
    Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M (2005) CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci U S A 102:4848–4853PubMedPubMedCentralGoogle Scholar
  86. 86.
    Pesce JT, Liu Z, Hamed H, Alem F, Whitmire J, Lin H, Liu Q, Urban JF Jr, Gause WC (2008) Neutrophils clear bacteria associated with parasitic nematodes augmenting the development of an effective Th2-type response. J Immunol 180:464–474PubMedPubMedCentralGoogle Scholar
  87. 87.
    Actor JK, Shirai M, Kullberg MC, Buller RM, Sher A, Berzofsky JA (1993) Helminth infection results in decreased virus-specific CD8+ cytotoxic T-cell and Th1 cytokine responses as well as delayed virus clearance. Proc Natl Acad Sci U S A 90:948–952PubMedPubMedCentralGoogle Scholar
  88. 88.
    Kullberg MC, Pearce EJ, Hieny SE, Sher A, Berzofsky JA (1992) Infection with Schistosoma mansoni alters Th1/Th2 cytokine responses to a non-parasite antigen. J Immunol 148:3264–3270PubMedGoogle Scholar
  89. 89.
    Pearce EJ, Caspar P, Grzych JM, Lewis FA, Sher A (1991) Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med 173:159–166PubMedGoogle Scholar
  90. 90.
    Pearlman E, Kazura JW, Hazlett FE, Jr., Boom WH (1993) Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol 151:4857–4864PubMedGoogle Scholar
  91. 91.
    Else KJ, Finkelman FD, Maliszewski CR, Grencis RK (1994) Cytokine-mediated regulation of chronic intestinal helminth infection. J Exp Med 179:347–351PubMedGoogle Scholar
  92. 92.
    Finkelman FD, Madden KB, Cheever AW, Katona IM, Morris SC, Gately MK, Hubbard BR, Gause WC, Urban JF Jr (1994) Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J Exp Med 179:1563–1572PubMedGoogle Scholar
  93. 93.
    Toellner KM, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC, Acha-Orbea H (1998) T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187:1193–1204PubMedPubMedCentralGoogle Scholar
  94. 94.
    Cunningham AF, Khan M, Ball J, Toellner KM, Serre K, Mohr E, MacLennan IC (2004) Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1. Eur J Immunol 34:2986–2995PubMedGoogle Scholar
  95. 95.
    Bobat S, Flores-Langarica A, Hitchcock J, Marshall JL, Kingsley RA, Goodall M, Gil-Cruz C, Serre K, Leyton DL, Letran SE et al (2011) Soluble flagellin, FliC, induces an Ag-specific Th2 response, yet promotes T-bet-regulated Th1 clearance of Salmonella typhimurium infection. Eur J Immunol 41:1606–1618PubMedGoogle Scholar
  96. 96.
    Bassily S, Hyams KC, el-Ghorab NM, Mansour MM, el-Masry NA, Dunn MA (1987) Immunogenicity of hepatitis B vaccine in patients infected with Schistosoma mansoni. Am J Trop Med Hyg 36:549–553PubMedGoogle Scholar
  97. 97.
    Cooper PJ, Chico M, Sandoval C, Espinel I, Guevara A, Levine MM, Griffin GE, Nutman TB (2001) Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect Immun 69:1574–1580PubMedPubMedCentralGoogle Scholar
  98. 98.
    Cooper PJ, Espinel I, Paredes W, Guderian RH, Nutman TB (1998) Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. J Infect Dis 178:1133–1138PubMedGoogle Scholar
  99. 99.
    Kilian HD, Nielsen G (1989) Cell-mediated and humoral immune response to tetanus vaccinations in onchocerciasis patients. Trop Med Parasitol (Official Organ Deutsche Tropenmedizinische Gesellschaft Deutsche Gesellschaft fur Technische Zusammenarbeit) 40:285–291PubMedGoogle Scholar
  100. 100.
    Helmby H, Kullberg M, Troye-Blomberg M (1998) Altered immune responses in mice with concomitant Schistosoma mansoni and Plasmodium chabaudi infections. Infect Immun 66:5167–5174PubMedPubMedCentralGoogle Scholar
  101. 101.
    Legesse M, Erko B, Balcha F (2004) Increased parasitaemia and delayed parasite clearance in Schistosoma mansoni and Plasmodium berghei co-infected mice. Acta Trop 91:161–166PubMedGoogle Scholar
  102. 102.
    Su Z, Segura M, Morgan K, Loredo-Osti JC, Stevenson MM (2005) Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 73:3531–3539PubMedPubMedCentralGoogle Scholar
  103. 103.
    Tetsutani K, Ishiwata K, Ishida H, Tu L, Torii M, Hamano S, Himeno K, Hisaeda H (2009) Concurrent infection with Heligmosomoides polygyrus suppresses anti-Plasmodium yoelii protection partially by induction of CD4(+)CD25(+)Foxp3(+) Treg in mice. Eur J Immunol 39:2822–2830PubMedGoogle Scholar
  104. 104.
    Lyke KE, Dicko A, Dabo A, Sangare L, Kone A, Coulibaly D, Guindo A, Traore K, Daou M, Diarra I et al (2005) Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am J Trop Med Hyg 73:1124–1130PubMedPubMedCentralGoogle Scholar
  105. 105.
    Nacher M, Gay F, Singhasivanon P, Krudsood S, Treeprasertsuk S, Mazier D, Vouldoukis I, Looareesuwan S (2000) Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol 22:107–113PubMedGoogle Scholar
  106. 106.
    Araujo MI, Lopes AA, Medeiros M, Cruz AA, Sousa-Atta L, Sole D, Carvalho EM (2000) Inverse association between skin response to aeroallergens and Schistosoma mansoni infection. Int Arch Allergy Immunol 123:145–148PubMedGoogle Scholar
  107. 107.
    Cooper PJ, Chico ME, Rodrigues LC, Ordonez M, Strachan D, Griffin GE, Nutman TB (2003) Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol 111:995–1000PubMedGoogle Scholar
  108. 108.
    Dagoye D, Bekele Z, Woldemichael K, Nida H, Yimam M, Hall A, Venn AJ, Britton JR, Hubbard R, Lewis SA (2003) Wheezing, allergy, and parasite infection in children in urban and rural Ethiopia. Am J Respir Criti Care Med 167:1369–1373Google Scholar
  109. 109.
    Lynch NR, Hagel I, Perez M, Di Prisco MC, Lopez R, Alvarez N (1993) Effect of anthelmintic treatment on the allergic reactivity of children in a tropical slum. J Allergy Clin Immunol 92:404–411PubMedGoogle Scholar
  110. 110.
    Nyan OA, Walraven GE, Banya WA, Milligan P, Van Der Sande M, Ceesay SM, Del Prete G, McAdam KP (2001) Atopy, intestinal helminth infection and total serum IgE in rural and urban adult Gambian communities. Clin Exp Allergy 31:1672–1678PubMedGoogle Scholar
  111. 111.
    van den Biggelaar AH, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YC, Souverijn JH, Missinou MA, Borrmann S, Kremsner PG, Yazdanbakhsh M (2004) Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis 189:892–900Google Scholar
  112. 112.
    D’Elia R, Behnke JM, Bradley JE, Else KJ (2009) Regulatory T cells: a role in the control of helminth-driven intestinal pathology and worm survival. J Immunol 182:2340–2348Google Scholar
  113. 113.
    Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128:825–832PubMedGoogle Scholar
  114. 114.
    Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, Nagler-Anderson C (2000) Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med 6:536–542PubMedGoogle Scholar
  115. 115.
    Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33:1439–1449PubMedGoogle Scholar
  116. 116.
    Correale J, Farez M (2009) Helminth antigens modulate immune responses in cells from multiple sclerosis patients through TLR2-dependent mechanisms. J Immunol 183:5999–6012PubMedGoogle Scholar
  117. 117.
    el Ghorab NM, Bassily S, Fouad S, el-Masry NA, Boctor F, Kamal KA (1992) Immunological response to diphtheria/tetanus vaccine in Schistosomiasis mansoni patients. J Egypt Soc Parasitol 22:747–765PubMedGoogle Scholar
  118. 118.
    Yakubovski MV, Varenich SE, Sviziqava AP (1990) Influence of intestinal parasites on postvaccination immunity against bacterial and viral infections. Proc Acad Sciences, Belarus Sci Agriculture, Minsk 4:101–8Google Scholar
  119. 119.
    Sabin EA, Araujo MI, Carvalho EM, Pearce EJ (1996) Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J Infect Dis 173:269–272PubMedGoogle Scholar
  120. 120.
    John TJ, Jayabal P (1972) Oral polio vaccination of children in the tropics. I. The poor seroconversion rates and the absence of viral interference. Am J Epidemiol 96:263–269PubMedGoogle Scholar
  121. 121.
    Linhares AC, Gabbay YB, Mascarenhas JD, de Freitas RB, Oliveira CS, Bellesi N, Monteiro TA, Lins-Lainson Z, Ramos FL, Valente SA (1996) Immunogenicity, safety and efficacy of tetravalent rhesus-human, reassortant rotavirus vaccine in Belem, Brazil. Bull World Health Organ 74:491–500PubMedPubMedCentralGoogle Scholar
  122. 122.
    Su-Arehawaratana P, Singharaj P, Taylor DN, Hoge C, Trofa A, Kuvanont K, Migasena S, Pitisuttitham P, Lim YL, Losonsky G et al (1992) Safety and immunogenicity of different immunization regimens of CVD 103-HgR live oral cholera vaccine in soldiers and civilians in Thailand. J Infect Dis 165:1042–1048PubMedGoogle Scholar
  123. 123.
    Suharyono, Simanjuntak C, Witham N, Punjabi N, Heppner DG, Losonsky G, Totosudirjo H, Rifai AR, Clemens, J, Lim YL et al (1992) Safety and immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR in 5-9-year-old Indonesian children. Lancet 340:689–694PubMedGoogle Scholar
  124. 124.
    Attallah AM, Ghanem GE, Ismail H, El Waseef AM (2003) Placental and oral delivery of Schistosoma mansoni antigen from infected mothers to their newborns and children. Am J Trop Med Hyg 68:647–651PubMedGoogle Scholar
  125. 125.
    Bal MS, Mandal NN, Das MK, Kar SK, Sarangi SS, Beuria MK (2010) Transplacental transfer of filarial antigens from Wuchereria bancrofti-infected mothers to their offspring. Parasitology 137:669–673PubMedGoogle Scholar
  126. 126.
    McDonald EA, Kurtis JD, Acosta L, Gundogan F, Sharma S, Pond-Tor S, Wu HW, Friedman JF (2013) Schistosome egg antigens elicit a proinflammatory response by trophoblast cells of the human placenta. Infect Immun 81:704–712PubMedPubMedCentralGoogle Scholar
  127. 127.
    Saha DR, Rajendran K, Ramamurthy T, Nandy RK, Bhattacharya SK (2008) Intestinal parasitism and Vibrio cholerae infection among diarrhoeal patients in Kolkata, India. Epidemiol Infect 136:661–664PubMedPubMedCentralGoogle Scholar
  128. 128.
    Tamang MD, Sharma N, Makaju RK, Sarma AN, Koju R, Nepali N, Mishra SK (2005) An outbreak of El Tor cholera in Kavre district, Nepal. Kathmandu Univ Med J (KUMJ) 3:138–142Google Scholar
  129. 129.
    Lycke N (1997) The mechanism of cholera toxin adjuvanticity. Res Immunol 148:504–520PubMedGoogle Scholar
  130. 130.
    Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque AS, Ryan ET, Qadri F, Calderwood SB (2008) Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl Trop Dis 2:e221PubMedPubMedCentralGoogle Scholar
  131. 131.
    Levine MM, Kaper JB, Herrington D, Ketley J, Losonsky G, Tacket CO, Tall B, Cryz S (1988) Safety, immunogenicity, efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet 2:467–470PubMedGoogle Scholar
  132. 132.
    Losonsky GA, Tacket CO, Wasserman SS, Kaper JB, Levine MM (1993) Secondary Vibrio cholerae-specific cellular antibody responses following wild-type homologous challenge in people vaccinated with CVD 103-HgR live oral cholera vaccine: changes with time and lack of correlation with protection. Infect Immun 61:729–733PubMedPubMedCentralGoogle Scholar
  133. 133.
    Tacket CO, Cohen MB, Wasserman SS, Losonsky G, Livio S, Kotloff K, Edelman R, Kaper JB, Cryz SJ, Giannella RA et al (1999) Randomized, double-blind, placebo-controlled, multicentered trial of the efficacy of a single dose of live oral cholera vaccine CVD 103-HgR in preventing cholera following challenge with Vibrio cholerae O1 El tor inaba three months after vaccination. Infect Immun 67:6341–6345PubMedPubMedCentralGoogle Scholar
  134. 134.
    Richie EE, Punjabi NH, Sidharta YY, Peetosutan KK, Sukandar MM, Wasserman SS, Lesmana MM, Wangsasaputra FF, Pandam SS, Levine MM et al (2000) Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 18:2399–2410PubMedGoogle Scholar
  135. 135.
    Cooper PJ, Chico ME, Losonsky G, Sandoval C, Espinel I, Sridhara R, Aguilar M, Guevara A, Guderian RH, Levine MM et al (2000) Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis 182:1199–1206PubMedGoogle Scholar
  136. 136.
    Hornqvist E, Goldschmidt TJ, Holmdahl R, Lycke N (1991) Host defense against cholera toxin is strongly CD4+ T cell dependent. Infect Immun 59:3630–3638PubMedPubMedCentralGoogle Scholar
  137. 137.
    Cooper PJ, Espinel I, Wieseman M, Paredes W, Espinel M, Guderian RH, Nutman TB (1999) Human onchocerciasis and tetanus vaccination: impact on the postvaccination antitetanus antibody response. Infect Immun 67:5951–5957PubMedPubMedCentralGoogle Scholar
  138. 138.
    Stewart GR, Elson L, Araujo E, Guderian R, Nutman TB, Bradley JE (1995) Isotype-specific characterization of antibody responses to Onchocerca volvulus in putatively immune individuals. Parasite Immunology 17:371–380PubMedGoogle Scholar
  139. 139.
    Jefferis R, Walker MR (1988) The biological significance of specific antibody IgG subclass profiles. Monographs Allergy 23:73–77Google Scholar
  140. 140.
    Khalife J, Dunne DW, Richardson BA, Mazza G, Thorne KJ, Capron A, Butterworth AE (1989) Functional role of human IgG subclasses in eosinophil-mediated killing of schistosomula of Schistosoma mansoni. J Immunol 142:4422–4427PubMedGoogle Scholar
  141. 141.
    Elias D, Akuffo H, Pawlowski A, Haile M, Schon T, Britton S (2005) Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 23:1326–1334PubMedGoogle Scholar
  142. 142.
    Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S (2001) Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin Exp Immunol 123:219–225PubMedPubMedCentralGoogle Scholar
  143. 143.
    Hori H, Watanabe M, Sakurai M (1993) Infectious diseases in African children. Acta paediatrica Japonica. Overseas Edition 35:553–558Google Scholar
  144. 144.
    Raviglione MC, Snider DE Jr, Kochi A (1995) Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA273:220–226PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The Institute of Microbiology and Infection, College of Medical and Dental SciencesUniversity of BirminghamEdgbaston, BirminghamUK
  2. 2.Institute of Biomedical Research, School of Immunity and InfectionUniversity of BirminghamEdgbaston, BirminghamUK

Personalised recommendations