Probability Models for Ranking Data

  • Mayer Alvo
  • Philip L. H. Yu
Part of the Frontiers in Probability and the Statistical Sciences book series (FROPROSTAS)


Probability modeling for ranking data is an efficient way to understand people’s perception and preference on different objects. Various probability models for ranking data have been developed, particularly in the last decade where many new problems involving a large number of objects emerged. In their review paper on probability models for ranking data, Critchlow et al. (1991) broadly categorized these models into four classes: (1) order statistics models, (2) paired comparison models, (3) distance-based models, and (4) multistage models. Since their publication in 1991, variants of these models and new models have been developed. In this chapter, we will introduce these four classes of models and describe their properties.


Ranking Model Ranking Data Mixed Logit Model Ranking Probability Complete Consensus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adkins, L., & Fligner, M. (1998). A non-iterative procedure for maximum likelihood estimation of the parameters of Mallows’ model based on partial rankings. Communications in Statistics: Theory and Methods, 27(9), 2199–2220.CrossRefMATHMathSciNetGoogle Scholar
  2. Allison, P. D., & Christakis, N. A. (1994). Logit models for sets of ranked items. Sociological Methodology, 24, 199–228.CrossRefGoogle Scholar
  3. Beckett, L. A. (1993). Maximum likelihood estimation in Mallows’ model using partially ranked data. In M. A. Fligner & J. S. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 92–108). New York: Springer.CrossRefGoogle Scholar
  4. Beggs, S., Cardell, S., & Hausman, J. (1981). Assessing the potential demand for electric cars. Journal of Econometrics, 16, 1–19.CrossRefGoogle Scholar
  5. Biernacki, C., & Jacques, J. (2013). A generative model for rank data based on insertion sort algorithm. Computational Statistics and Data Analysis, 58, 162–176.CrossRefMathSciNetGoogle Scholar
  6. Bockenholt, U. (1993). Applications of Thurstonian models to ranking data. In M. Fligner & J. Verducci (Eds.), Probability models and statistical analyses for ranking data. New York: Springer.Google Scholar
  7. Bradley, R. A., & Terry, M. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika, 39(3/4), 324–345.Google Scholar
  8. Brook, D., & Upton, G. (1974). Biases in local government elections due to position on the ballot paper. Applied Statistics, 23, 414–419.CrossRefGoogle Scholar
  9. Busse, L. M., Orbanz, P., & Buhmann, J. M. (2007). Cluster analysis of heterogeneous rank data. In Proceedings of the 24th International Conference on Machine Learning, ACM New York, NY, USA (pp. 113–120).Google Scholar
  10. Chapman, R., & Staelin, R. (1982). Exploiting rank ordered choice set data within the stochastic utility model. Journal of Marketing Research, 19, 288–301.CrossRefGoogle Scholar
  11. Critchlow, D. (1985). Metric methods for analyzing partially ranked data. New York: Springer.CrossRefMATHGoogle Scholar
  12. Critchlow, D., & Verducci, J. (1992). Detecting a trend in paired rankings. Applied Statistics, 41, 17–29.CrossRefMATHGoogle Scholar
  13. Critchlow, D. E., Fligner, M. A., Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35, 294–318.CrossRefMATHMathSciNetGoogle Scholar
  14. Daniels, H. (1950). Rank correlation and population models. Journal of the Royal Statistical Society Series B, 12, 171–181.MATHMathSciNetGoogle Scholar
  15. David, H. A. (1988). The method of paired comparisons. New York: Oxford University Press.MATHGoogle Scholar
  16. Diaconis, P. (1988). Group representations in probability and statistics. Hayward: Institute of Mathematical Statistics.MATHGoogle Scholar
  17. Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. Annals of Statistics, 17, 949–979.CrossRefMATHMathSciNetGoogle Scholar
  18. Doignon, J.-P., Pekec, A., & Regenwetter, M. (2004). The repeated insertion model for rankings: Missing link between two subset choice models. Psychometrika, 69(1), 33–54.CrossRefMathSciNetGoogle Scholar
  19. Feigin, P. D. (1993). Modelling and analysing paired ranking data. In M. A. Fligner & J. S. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 75–91). New York: Springer.CrossRefGoogle Scholar
  20. Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society Series B, 48(3), 359–369.MATHMathSciNetGoogle Scholar
  21. Fligner, M. A., & Verducci, J. S. (1988). Multi-stage ranking models. Journal of the American Statistical Association, 83, 892–901.CrossRefMATHMathSciNetGoogle Scholar
  22. Fok, D., Paap, R., & van Dijk, B. (2012). A rank-ordered logit model with unobserved heterogeneity in ranking capabilities. Journal of Applied Econometrics, 27, 831–846.CrossRefMathSciNetGoogle Scholar
  23. Hausman, J., & Ruud, P. A. (1987). Specifying and testing econometric models for rank-ordered data. Journal of Econometrics, 34, 83–104.CrossRefMATHMathSciNetGoogle Scholar
  24. Henery, R. J. (1981). Permutation probabilities as models for horse races. Journal of the Royal Statistical Society Series B, 43, 86–91.MathSciNetGoogle Scholar
  25. Henery, R. J. (1983). Permutation probabilities for gamma random variables. Applied Probability, 20, 822–834.CrossRefMATHMathSciNetGoogle Scholar
  26. Joe, H. (2001). Multivariate extreme value distributions and coverage of ranking probabilities. Journal of Mathematical Psychology, 45, 180–188.CrossRefMATHMathSciNetGoogle Scholar
  27. Koop, G., & Poirier, D. J. (1994). Rank-ordered logit models: An empirical analysis of ontario voter preferences. Journal of Applied Econometrics, 9(4), 69–388.CrossRefGoogle Scholar
  28. Lee, P. H., & Yu, P. L. H. (2012). Mixtures of weighted distance-based models for ranking data with applications in political studies. Computational Statistics and Data Analysis, 56, 2486–2500.CrossRefMATHMathSciNetGoogle Scholar
  29. Luce, R. D. (1959). Individual choice behavior. New York: Wiley.MATHGoogle Scholar
  30. Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44, 114–130.Google Scholar
  31. Marden, J. I. (1992). Use of nested orthogonal contrasts in analyzing rank data. Journal of the American Statistical Association, 87, 307–318.CrossRefMathSciNetGoogle Scholar
  32. Marden, J. I. (1995). Analyzing and modeling rank data. New York: Chapman Hall.MATHGoogle Scholar
  33. Marley, A. A. J. (1968). Some probabilistic models of simple choice and ranking. Journal of Mathematical Psychology, 5, 311–332.CrossRefMATHMathSciNetGoogle Scholar
  34. McCullagh, P. (1993b). Permutations and regression models. In M. Fligner & J. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 196–215). New York: Springer.CrossRefGoogle Scholar
  35. McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). New York: Academic.Google Scholar
  36. McFadden, D. (1978). Modeling the choice of residential location. In F. Snickars & J. Weibull (Eds.), Spatial interaction theory and planning models (pp. 75–96). North Holland: Amsterdam.Google Scholar
  37. McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15, 447–470.CrossRefGoogle Scholar
  38. Mosteller, F. (1951). Remarks on the method of paired comparisons. I. The least squares solution assuming equal standard deviations and equal correlations. Psychometrika, 16, 3–9.Google Scholar
  39. Pendergrass, R. N., & Bradley, R. A. (1960). Ranking in triple comparisons. In O. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics (pp. 331–351). Stanford: Stanford University Press.Google Scholar
  40. Savage, I. R. (1956). Contributions to the theory of rank order statistics: The two-sample case. Annals of Mathematical Statistics, 27, 590–615.CrossRefMATHMathSciNetGoogle Scholar
  41. Savage, I. R. (1957). Contributions to the theory of rank order statistics: The “trend” case. Annals of Mathematical Statistics, 28, 968–977.CrossRefMATHMathSciNetGoogle Scholar
  42. Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68(2), 267–287.CrossRefMathSciNetGoogle Scholar
  43. Smith, B. B. (1950). Discussion of Professor Ross’s paper. Journal of the Royal Statistical Society Series B, 12, 53–56.Google Scholar
  44. Stern, H. (1990a). A continuum of paired comparisons models. Biometrika, 77, 265–273.CrossRefMATHMathSciNetGoogle Scholar
  45. Stern, H. (1990b). Models for distributions on permutations. Journal of the American Statistical Association, 85, 558–564.CrossRefGoogle Scholar
  46. Tallis, G., & Dansie, B. (1983). An alternative approach to the analysis of permutations. Applied Statistics, 32, 110–114.CrossRefMATHGoogle Scholar
  47. Thurstone, L. L. (1927). A law of comparative judgement. Psychological Reviews, 34, 273–286.CrossRefGoogle Scholar
  48. Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299.CrossRefGoogle Scholar
  49. Xu, L. (2000). A multistage ranking model. Psychometrika, 65(2), 217–231.CrossRefMATHMathSciNetGoogle Scholar
  50. Yellot, J. (1977). The relationship between Luce’s choice axiom, Thurstone’s theory of comparative judgment and the double exponential distribution. Journal of Mathematical Psychology, 15, 109–144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mayer Alvo
    • 1
  • Philip L. H. Yu
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  2. 2.Department of Statistics and Actuarial ScienceThe University of Hong KongHong KongChina

Personalised recommendations