Photobiology pp 399-413 | Cite as


  • Lars Olof BjörnEmail author
  • Helen Ghiradella


Three kinds of light emission from organisms take place: bioluminescence in a narrow sense from some animals, dinoflagellates, fungi, and bacteria; delayed light emission from photosynthetic cells; and ultraweak light emission from all kinds of cells. All these phenomena are treated in this chapter.


Bioluminescence Emission Light Cells 


  1. Apel H, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399Google Scholar
  2. Barros MP, Bechara EJH (2000) Luciferase and urate may act as antioxidant defeneses in larval Pyrearinus termitilluminans (Elateridae: Coleoptera) during natural development and upon 20-hydroxyecdysone treatment. Photochem Photobiol 71:648–654PubMedCrossRefGoogle Scholar
  3. Bassot JM, Nicolas MT (1995) Bioluminescence in scale-worm photosomes: the photoprotein polyoidin is specific for the detection of superoxide radicals. Histochem Cell Biol 104:199–210PubMedCrossRefGoogle Scholar
  4. Bermudes D, Petersen RH, Nealson KH (1992) Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 84:799–802CrossRefGoogle Scholar
  5. Bertogna E, Bezerra J, Conforti E, Gallep CM (2013) Acute stress in seedlings detected by ultra-weak photon emission. Photochem Photobiol B Biol 118:74–76CrossRefGoogle Scholar
  6. Björn LO (1971) Far-red induced, long-lived afterglow from photosynthetic cells. Size of afterglow unit and paths of energy accumulation and dissipation. Photochem Photobiol 13:5–20CrossRefGoogle Scholar
  7. Björn LO, Forsberg AS (1979) Imaging by delayed light emission (phytoluminography) as a method for detecting damage to the photosynthetic system. Physiol Plant 47:215–222CrossRefGoogle Scholar
  8. Blinks JR (1989) Use of calcium-regulated photoproteins as intracellular Ca2+ indicators. Methods Enzymol 172:164–203PubMedCrossRefGoogle Scholar
  9. Bowmaker JK, Dartnall HJA, Herring PJ (1988) Longwave-sensitive visual pigments in some deep-sea fishes: segregation of paired rhodopsins and porphyropsins. J Comp Physiol A163:685–698CrossRefGoogle Scholar
  10. Branham MA, Greenfield MD (1996) Flashing males win mate success. Nature 381:745–746CrossRefGoogle Scholar
  11. Buck J, Buck E (1976) Synchronous fireflies. Sci Am 234:74–85PubMedCrossRefGoogle Scholar
  12. Buck J (1988) Synchronous rhythmic flashing of fireflies. II. Q Rev Biol 63:265–289PubMedCrossRefGoogle Scholar
  13. Buskey EJ, Swift E (1983) Behavioural responses of the coastal copepod Acartia hudsonica to simulated dinoflagellate bioluminescence. J Exp Biol Ecol 72:43–58CrossRefGoogle Scholar
  14. Campbell AK (1988) Chemiluminescence: principles and applications in biology and medicine. Ellis Horwood, Chichester, p 608. ISBN ISBN 3-527-26342-XGoogle Scholar
  15. Cassius V. Stevani CV, Oliveira AG, Mendes LF, Ventura FF, Waldenmaier HE, Carvalho RP, Pereira TA (2013) Current status of research on fungal bioluminescence: Biochemistry and prospects for ecotoxicological application. Photochem Photobiol 89:1318–1326Google Scholar
  16. Cen Y-P, Björn LO (1994) Action spectra for enhancement of ultraweak luminescence by ultraviolet radiation (270–340 nm) in leaves of Brassica napus. J Photochem Photobiol BL Biol 22:125–129CrossRefGoogle Scholar
  17. Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–1218Google Scholar
  18. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995a) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455PubMedCrossRefGoogle Scholar
  19. Cubitt AB, Firtel RA, Fischer G, Jaffe LF, Miller AL (1995b) Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaquorin. Development 121:2291–2301PubMedGoogle Scholar
  20. Czyz A, Wrobel B, Wegrzyn G (2000) Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146:283–288PubMedGoogle Scholar
  21. Denton EJ, Gilpin-Brown JB, Wright PG (1972) The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc R Soc Lond B 182:145–158CrossRefGoogle Scholar
  22. Denton EJ, Herring PJ, Widder EA, Latz MF, Case JF (1985) The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc R Soc Lond B 225:63–97CrossRefGoogle Scholar
  23. Deo SK, Daunert S (2001) Luminescent proteins from Aequorea victoria: applications in drug discovery and in high throughput analysis. Fresenius J Anal Chem 369:258–266PubMedCrossRefGoogle Scholar
  24. DeVault D, Govindjee, Arnold D (1983) Energetics of photosynthetic glow peaks. Proc Natl Acad Sci U S A 80:983–987PubMedCentralPubMedCrossRefGoogle Scholar
  25. Douglas RH, Partridge JC, Marshall NJ (1998a) The eyes of deepsea fish I: lens pigmentation, tapeta and visual pigments. Prog Retin Eye Res 17:597–636Google Scholar
  26. Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CWT, Hynninen PH (1998b) Dragon fish see using chlorophyll. Nature 393:425CrossRefGoogle Scholar
  27. Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res 39:2817–2832PubMedCrossRefGoogle Scholar
  28. Douglas RH, Mullineaux CW, Partridge JC (2000) Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Philos Trans R Soc Lond B 355:1269–1272CrossRefGoogle Scholar
  29. Dubuisson M, Marchand C, Rees J-F (2013) Firefly luciferin as antioxidant and light emitter: the evolution of insect bioluminescence. Luminescence 19:339–344CrossRefGoogle Scholar
  30. Eckstein J, Cho KW, Colepicolo P, Ghisla S, Hastings JW, Wilson T (1990) A time-dependent bacterial luminescence emission spectrum in an in vitro single turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. Proc Natl Acad Sci U S A 87:1466–1470PubMedCentralPubMedCrossRefGoogle Scholar
  31. Esaias WE, Curl HC (1972) Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnol Oceanogr 17:901–906CrossRefGoogle Scholar
  32. Esaias WE, Curl HC Jr, Seliger HH (1973) Action spectrum for a low intensity rapid photoinhibition of mechanically stimulable bioluminescence in the marine dinoflagellates Gonyaulax catenella, Gonyaulax acatenella and Gonyaulax tamarensis. J Cell Physiol 82:363–372PubMedCrossRefGoogle Scholar
  33. Fleisher KJ, Case JF (1995) Cephalopod predation facilitated by dinoflagellate luminescence. Biol Bull 189:263–271CrossRefGoogle Scholar
  34. Ghiradella H (1998) The anatomy of light production: the fine structure of the firefly lantern. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol. 5 Insecta. Wiley-Liss, New York, pp 363–381Google Scholar
  35. Ghiradella H, Schmidt JT (2004) Fireflies at one hundred plus: a new look at flash control. Integr Comp Biol 44:203–212PubMedCrossRefGoogle Scholar
  36. Gonzales-Flecha B, Demple B (1994) Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J Bacteriol 176:2293–2299Google Scholar
  37. Harvey EN (1952) Bioluminescence. Academic, New YorkGoogle Scholar
  38. Hastings JW (1978) Bacterial and dinoflagellate luminescent systems. In: Herring PJ (ed) Bioluminescence in action. Academic, London, pp 129–170Google Scholar
  39. Hastings JW (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol 19:309–321PubMedCrossRefGoogle Scholar
  40. Hastings JW (1996) Chemistries and colors of bioluminescent reactions: a review. Gene 173:5–11PubMedCrossRefGoogle Scholar
  41. Hastings JW, Tu D (eds) (1995) Symposium-in-print: molecular mechanisms in bioluminescence. Photochem Photobiol 62:597–673Google Scholar
  42. Heath MC (2000) Advances in imaging the cell biology of plant-microbe interactions. Annu Rev Phytopathol 38:443–459PubMedCrossRefGoogle Scholar
  43. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664PubMedCrossRefGoogle Scholar
  44. Herrera AA, Hastings JW, Morin JG (1974) Bioluminescence in cell-free extracts of scale-worm Hamrmothoe (Annelida: Polynoidae). Biol Bull 147:480–481Google Scholar
  45. Herring PJ (1982) Aspects of the bioluminescence of fishes. Oceanogr Mar Biol Annu Rev 20:415–470Google Scholar
  46. Herring P (2002) The biology of the deep ocean. Oxford University Press, OxfordGoogle Scholar
  47. Hosseini P, Nealson KH (1995) Symbiotic luminous soil bacteria: unusual regulations for an unusual niche. Photochem Photobiol 62:633–640CrossRefGoogle Scholar
  48. Inouye S, Watanabe K, Nakamura H, Shimomura O (2000) Secretional luciferase of the luminour shrimp Opiophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett 481:19–25PubMedCrossRefGoogle Scholar
  49. Isobe M, Uyakul D, Goto T (1987) Lampteromyces bioluminescence—1. Identification of riboflavin as the light emitter in the mushroom L. japonicus. J Biolumin Chemilumin 1:181–188PubMedCrossRefGoogle Scholar
  50. Jezowska-Trzebiatowska B, Kochel B, Slawinski J, Strek W (eds) (1990) Biological luminescence. World Scientific, SingaporeGoogle Scholar
  51. Katsev AM, Wegrzyn G, Sziplewska H (2004) Effects of hydrogen peroxide on light emission by various strains of marine luminescent bacteria. J Basic Microbiol 44:178–184PubMedCrossRefGoogle Scholar
  52. Kenaley CP (2010) Comparative innervation of cephalic photophores of the loosejaw dragonfishes (Teleostei: Stomiiformes: Stomiidae): evidence for parallel evolution of long-wave bioluminescence. J Morphol 271:418–437PubMedGoogle Scholar
  53. Kenaley CP, DeVaney SC, Fjeran TT (2014) The complex evolutionary history of seeing red: Molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiformes: Stomidae). Evolution 68:996–1013Google Scholar
  54. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526PubMedCrossRefGoogle Scholar
  55. Knight MR, Read ND, Campbell AK, Trewavas AJ (1993) Imaging dynamics in living plants using semisynthetic recombinant aequorins. J Cell Biol 121:83–90PubMedCrossRefGoogle Scholar
  56. Kozakiewicz J, Gajewska M, Lyzen R, Czyz A, Wegrzyn G (2005) Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol Lett 250:105–110PubMedCrossRefGoogle Scholar
  57. Lavorel J (1975) Luminescence. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 223–317CrossRefGoogle Scholar
  58. Lee J, Matheson IBC, Müller F, O’Cane DJ, Vervoort J, Visser AJWG (1991) The mechanism of bacterial bioluminescence. In: Muller F (ed) Chemistry and biochemistry of rlavins and flavoenzymes. CRC Press, Orlando, pp 109–151Google Scholar
  59. Li Y, Swift E, Buskey EJ (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (Pyrrophyta). J Phycol 32:974–982CrossRefGoogle Scholar
  60. Lloyd JE (1980) Male Photuris mimic sexual signals of their females’ prey. Science 210:669–671PubMedCrossRefGoogle Scholar
  61. Lloyd JE (1984a) On deception, a way of all flesh, and firefly signaling and systematics. Oxf Surv Evol Biol 1:49–84Google Scholar
  62. Lloyd JE (1984b) Evolution of a firefly flash code. Fla Entomol 67:368–376CrossRefGoogle Scholar
  63. Lloyd JE, Wing SR (1983) Nocturnal aerial predation of fireflies by light-seeking fireflies. Science 222:634–635Google Scholar
  64. Lyzen R, Wegrzyn G (2005) Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species. Arch Microbiol 183:203–208PubMedCrossRefGoogle Scholar
  65. Marek P, Papaj D, Yeager J, Molina S, Wendy Moore W (2011) Bioluminescent aposematism in millipedes. Curr Biol 21:R680–R681PubMedCentralPubMedCrossRefGoogle Scholar
  66. McElroy WD, Seliger HH (1962) Origin and evolution of bioluminescence. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 91–101Google Scholar
  67. Marcinko CLJ, Painter SC, Martin AP, Allen JT (2013) A review of the measurement and modelling of dinoflagellate bioluminescence. Progress in Oceanography 109:117–129Google Scholar
  68. McFall-Ngai M, Morin JG (1991) Camouflage by disruptive illumination in leiognathids, a family of shallow-water, bioluminescent fishes. J Exp Biol 158:119–137Google Scholar
  69. McFall-Ngai M, Heath-Heckman EA, Gillette AA, Peyer SM, Harvie EA (2011) The secret languages of coevolved symbioses: insights from the Euprymna scolopesVibrio fischeri symbiosis. Semin Immunol 24:3–8PubMedCentralPubMedCrossRefGoogle Scholar
  70. Mensinger AF, Case JF (1992) Dinoflagellate luminescence increases the susceptibility of zooplankton to teleost predation. Mar Biol 112:207–210CrossRefGoogle Scholar
  71. Merritt DJ, Clarke AK (2011) Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (glowworms). J Biol Rhythms 34–43Google Scholar
  72. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148Google Scholar
  73. Miyashiro T, Ruby RG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84:795–806PubMedCentralPubMedCrossRefGoogle Scholar
  74. Moiseff A, Copeland J (2000) A new type of synchronized flashing in a North American firefly. J Insect Behav 13:597–612CrossRefGoogle Scholar
  75. Nakamura H, Kishi Y, Shimomura O, Morse D, Hastings JW (1989) Structure of dinoflagellate luciferin and its enzymatic and non-enzymatic air-oxidation products. J Am Chem Soc 111:7607–7611CrossRefGoogle Scholar
  76. O’Kane DJ, Lingle WL, Porter D, Wambler JE (1990a) Localization of bioluminescent tissues during basidiocarp development in Panellus stypticus. Mycologia 82:595–606CrossRefGoogle Scholar
  77. O’Kane DJ, Lingle WL, Porter D, Wambler JE (1990b) Spectral analysis of bioluminescence of Panellus stypticus. Mycologia 82:607–616CrossRefGoogle Scholar
  78. Partridge JC, Douglas RH (1995) Far-red sensitivity of dragon fish. Nature 375:21–22CrossRefGoogle Scholar
  79. Pérez-Bueno ML, Ciscato M, vandeVen M, García-Luque I, Valcke R, Barón M (2006) Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynth Res 90:111–123PubMedCrossRefGoogle Scholar
  80. Rees J-F, De Wergifosse B, Noiset O, Dubuisson M, Janssens B, Thompson EM (1998) The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. J Exp Biol 201:1211–1221PubMedGoogle Scholar
  81. Seliger HH, McElroy WD (1965) Light: physical and biological action. Academic, New YorkGoogle Scholar
  82. Shimomura O (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett 1054:220–222CrossRefGoogle Scholar
  83. Shimomura O (1980) Chlorophyll-derived bile pigment in bioluminescent euphausiids. FEBS Lett 116:203–206CrossRefGoogle Scholar
  84. Shimomura O (1989) Chemiluminescence of panal (a sesquiterpene) isolated from the luminous fungus Panellus stipticus. Photochem Photobiol 49:355–360Google Scholar
  85. Shimomura O (1992) The role of superoxide dismutase in regulating the light emission of luminescent fungi. J Exp Bot 43:1519–1525CrossRefGoogle Scholar
  86. Strehler B, Arnold W (1951) Light production in green plants. J Gen Physiol 34:809–820PubMedCentralPubMedCrossRefGoogle Scholar
  87. Sundbom E, Björn LO (1977) Phytoluminography: imaging plants by delayed light emission. Physiol Plant 40:39–41CrossRefGoogle Scholar
  88. Swift S, Throup J, Bycroft B, Williams P, Stewart G (1998) Quorum sensing: bacterial cell-cell signaling from bioluminescence to pathogenicity. In: Busby SJW, Thomas CM, Brown NL (eds) Molecular microbiology. Springer, Berlin, pp 185–207CrossRefGoogle Scholar
  89. Szpilewska H, Czyz A, Wegrzyn G (2003) experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress. Curr Microbiol 47:379–382PubMedCrossRefGoogle Scholar
  90. Tett PB, Kelly MG (1973) Marine bioluminescence. Oceanogr Mar Ann Rev 11:89–173Google Scholar
  91. Trimmer BA, Aprille JR, Dudzinski DM, Lagace CJ, Lewis SM, Michel T, Qazi S, Zayas RM (2001) Nitric oxide and the control of firefly flashing. Science 292:2486–2488PubMedCrossRefGoogle Scholar
  92. Tyystjärvi E, Vass I (2004) Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 363–388 (Govindjee, series and vol. Ed.)CrossRefGoogle Scholar
  93. Ulitzur S, Dunlap PV (1995) Regulatory circuitry controlling luminescence autoinduction in Vibrio fischeri. Photochem Photobiol 62:625–632CrossRefGoogle Scholar
  94. Underwood TJ, Tallamy DW, Pesek JD (1997) Bioluminescence in firefly larvae: a test of the aposematic display hypothesis (Coleoptera:Lampyridae). J Insect Behav 10:365–370CrossRefGoogle Scholar
  95. Vencl FV, Blasko BJ, Carlson AD (1994) Flash behavior of female Photuris versicolor fireflies (Coleoptera: Lampyridae) in simulated courtship and predatory dialogs. J Insect Behav 7:843–858CrossRefGoogle Scholar
  96. Vencl FV, Carlson AD (1998) Proximate mechanisms of sexual selection in the firefly Photinus pyralis (Coleoptera: Lampyridae). J Insect Behav 11:191–207CrossRefGoogle Scholar
  97. Viviani VR, Bechara EJH (1997) Bioluminescence and biological aspects of Brazilian railroad worms (Coleoptera: Phengodidae). Ann Entomol Soc Am 90:389–398Google Scholar
  98. Viviani VR, Ohmiya Y (2000) Bioluminescence and color determinants of Phrixothrix railroad worm luciferases: Chimeric luciferases, site-directed mutagenesis of Arg 215 and guanidine effect. Photochem Photobiol 72:267–271PubMedCrossRefGoogle Scholar
  99. Vršanský P, Chorvát DI, Fritzsche I, Hain M, Ševčík R (2012) Light-mimicking cockroaches indicate tertiary origin of recent terrestrial luminescence. Naturwissenschaften 99:739–749PubMedCrossRefGoogle Scholar
  100. Waldenmaier HE, Oliveira AG, Stevani CV (2012) Thoughts on the diversity of convergent evolution of bioluminescence on earth. Int J Astrobiol 11:335–343CrossRefGoogle Scholar
  101. Walker E, Bose JL, Stabb EV (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl Environ Microbiol 72:6600–6606PubMedCentralPubMedCrossRefGoogle Scholar
  102. Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from two deep-sea fishes. Science 225:512–513PubMedCrossRefGoogle Scholar
  103. Willis RE, Craig R, White CR, Merritt DJ (2011) Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm. J Comp Physiol 181:477–486Google Scholar
  104. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230PubMedCrossRefGoogle Scholar
  105. Wilson T, Hastings JW (2013) Bioluminescence: living lights, lights for living. Harvard University, Cambridge, MA, USAGoogle Scholar
  106. Wood NT, Allan AC, Haley A, Viri-Moussaid M, Trewavas AJ (2000) The characteristics of differential calcium signalling in tobacco guard cells. Plant J 24:335–344PubMedCrossRefGoogle Scholar
  107. Wood NT, Haley A, Viri-Moussaid M, Johnson CH, van der Luit AH, Trewavas AJ (2001) The calcium rhythms of different cell types oscillate with different circadian phases. Plant Physiol 125:787–796PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Life ScienceSouth China Normal UniversityGuangzhouChina
  2. 2.Department of BiologyLund UniversityLundSweden
  3. 3.Department of BiologyUniversity at AlbanyAlbanyUSA

Personalised recommendations