Skip to main content

The Photobiology of Human Skin

  • Chapter
  • First Online:
Photobiology
  • 2988 Accesses

Abstract

The skin, a large and complex organ, is divided into three layers, each comprising a variety of cell types. It contains its own immune system. The changes occurring in the skin during the induction and elicitation phases of contact and delayed-type hypersensitivity are outlined as examples of cutaneous immune responses. The exposure of human skin to solar UV radiation can result in a number of effects, some with adverse health outcomes, and the mechanisms involved in each are explained. Pigmentation can develop (immediate pigment darkening and delayed tanning), depending on the phototype of the individual. If the exposure is greater than the minimal erythema dose, sunburn occurs. The features of photoageing are found in chronically sun-exposed skin. Skin cancer, the most common form of cancer in fair-skinned subjects, is also associated with sun exposure, either cumulative or intermittent but intense. The two forms of nonmelanoma skin cancer are squamous cell cancer and basal cell cancer, while the third type of skin cancer, malignant melanoma, is less frequent but more dangerous. Solar UV radiation causes suppression of cell-mediated immune responses, and the implications of this downregulation for the effective control of skin tumors and infectious diseases are considered. Finally, the photodermatoses, which represent a diverse group of conditions linked to abnormal skin responses to UV and/or visible radiation, are described in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barr BB, Benton EC, McLaren K, Bunney H, Smith IW, Blessing K, Hunter JAA (1989) Human papillomavirus infection and skin cancer in renal allograft recipients. Lancet 1:124–129

    Article  CAS  PubMed  Google Scholar 

  • Barratt MD (2004) Structure-activity relationships and prediction of the phototoxicity and phototoxic potential of new drugs. Altern Lab Anim 32:511–524

    CAS  PubMed  Google Scholar 

  • Basta NO, James PW, Craft AW, McNally RJ (2011) Seasonal variation in the month of birth in teenagers and young adults with melanoma suggests the involvement of early-life UV exposure. Pigment Cell Melanoma Res 24:250–253

    Article  PubMed  Google Scholar 

  • Bath-Hexall F, Leonardi-Bee J, Smith C, Meal A, Hubbard R (2007) Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database. Int J Cancer 121:2105–2108

    Article  Google Scholar 

  • Bos JD (2005) Skin immune system (SIS), 3rd edn. CRC Press, New York

    Google Scholar 

  • Byrne SN, Limon-Flores AY, Ullrich SE (2008) Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol 180:4648–4655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chacon-Salinas R, Limon-Floresm AY, Chavez-Blanco AD, Gonzalez-Estrada A, Ullrich SE (2011) Mast-cell derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 186:25–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooke A, Johnson BE (1978) Dose response, wavelength dependence and rate of excision of ultraviolet radiation-induced pyrimidine dimers in mouse skin DNA. Biochim Biophys Acta 517:24–30

    Article  CAS  PubMed  Google Scholar 

  • Dal H, Boldemann C, Lindelof B (2008) Trends during a half century in relative squamous cell carcinoma by body site in the Swedish population: support for accumulated sun exposure as the main risk factor. J Dermatol 35:55–62

    Article  PubMed  Google Scholar 

  • Damian DL, Matthews YJ, Phan TA, Halliday GM (2011) An action spectrum for ultraviolet-radiation-induced immunosuppression in humans. Br J Dermatol 164:657–659

    CAS  PubMed  Google Scholar 

  • Daya-Grosjean L, Sarasin A (2000) UV-specific mutations of the human patched gene in basal carcinomas from normal individuals and xeroderma pigmentosus patients. Mutat Res 450:193–199

    Article  CAS  PubMed  Google Scholar 

  • De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of an unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158:84–98

    Article  PubMed  Google Scholar 

  • De Fabo EC, Noonan FP, Fears T, Merlino G (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res 64:6372–6376

    Article  PubMed  Google Scholar 

  • de Gruijl FR (1995) Action spectrum for photocarcinogenesis. Recent Results Cancer Res 139:21–30

    Article  PubMed  Google Scholar 

  • de Gruijl FR, van der Leun JC (1982) Systemic influence of pre-irradiation of a limited area on UV-tumorigenesis. Photochem Photobiol 35:379–383

    Google Scholar 

  • de Gruijl FR, Sterenborg HJ, Forbes PD, Davies RE, Cole C, Kelfkens G, van Weelden H, Slaper H, van der Leun JC (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53:53–60

    PubMed  Google Scholar 

  • de Vries E, van de Poll-Franse LV, Louwman WJ, de Gruijl FR, Coebergh JWW (2005) Prediction of skin cancer incidence in the Netherlands up to 2015. Br J Dermatol 152:481–488

    Article  PubMed  Google Scholar 

  • Diffey BL (2002) Sources and measurement of ultraviolet radiation. Methods 28:4–13

    Article  CAS  PubMed  Google Scholar 

  • Diffey BL (2004) The future incidence of cutaneous melanoma within the UK. Br J Dermatol 151:868–872

    Article  CAS  PubMed  Google Scholar 

  • Dixon KM, Sequeira VB, Camp AJ, Mason RS (2010) Vitamin d-fence. Photochem Photobiol Sci 9:564–570

    Article  CAS  PubMed  Google Scholar 

  • Elwood JM, Jopson J (1997) Melanoma and sun exposure: an overview of published studies. Int J Cancer 73:198–203

    Article  CAS  PubMed  Google Scholar 

  • Fisher MS, Kripke ML (1977) Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc Natl Acad Sci USA 74:1688–1692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Vourhees JJ (1997) Pathophysiology of premature skin ageing induced by ultraviolet light. N Engl J Med 337:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 124:869–871

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga A, Khaskhely NM, Ma Y, Sreevidya CS, Taguchi K, Nishigori C, Ullrich SE (2010) Langerhans cells serve as immunoregulatory cells by activating NKT cells. J Immunol 185:4633–4640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garssen J, Goettsch W, de Gruijl F, Slob W, Van Loveren H (1996) Risk assessment of UVB effects on resistance to infectious diseases. Photochem Photobiol 64:269–274

    Article  CAS  PubMed  Google Scholar 

  • Gibbs NK, Norval M (2013) Photoimmunosuppression: a brief overview. Photodermatol Photoimmunol Photomed 29:57–64

    Article  CAS  PubMed  Google Scholar 

  • Gibbs NK, Norval M, Traynor NJ, Wolf M, Johnson BE, Crosby J (1993) Action spectra for the trans to cis photoisomerisation of urocanic acid in vitro and in mouse skin. Photochem Photobiol 57:584–590

    Article  CAS  PubMed  Google Scholar 

  • Gibbs NK, Tye J, Norval M (2008) Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci 7:655–667

    Article  CAS  PubMed  Google Scholar 

  • Gilchrest BA, Soter NA, Stoff JS, Mihm MC (1981) The human sunburn reaction: histologic and biochemical studies. J Am Acad Dermatol 5:411–422

    Article  CAS  PubMed  Google Scholar 

  • Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P, Marks GC, Gaffney P, Battistutta D, Frost C, Lang C, Russell A (1999) Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinoma of the skin: a randomised controlled trial. Lancet 354:723–729

    Article  CAS  PubMed  Google Scholar 

  • Green AC, Williams GM, Logan V, Strutton GM (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29:257–263

    Article  CAS  PubMed  Google Scholar 

  • Grimbaldeston MA, Finlay-Jones JJ, Hart PH (2006) Mast cells in photodamaged skin: what is their role in skin cancer? Photochem Photobiol Sci 5:177–183

    Article  CAS  PubMed  Google Scholar 

  • Halder RM, Bridgeman-Shah S (1995) Skin cancer in African Americans. Cancer 75:s667–s673

    Article  Google Scholar 

  • Harrison GI, Young AR (2002) Ultraviolet radiation-induced erythema in human skin. Methods 28:14–19

    Article  CAS  PubMed  Google Scholar 

  • Irwin C, Barnes A, Veres D, Kaidbey K (1993) An ultraviolet action spectrum for immediate pigment darkening. Photochem Photobiol 57:504–507

    Article  CAS  PubMed  Google Scholar 

  • Jans J, Schul W, Sert YG, Rijksen Y, Rebel H, Eker AP, Nakajima S, van Steeg H, de Gruijl FR, Yasui A, Hoeijmakers JH, van der Horst GT (2005) Powerful skin cancer protection by a CPD-photolyase transgene. Curr Biol 15:105–115

    Article  CAS  PubMed  Google Scholar 

  • Kelly DA, Young AR, McGregor JM, Seed PT, Potten CS, Walker SL (2000) Sensitivity to sunburn is associated with susceptibility to ultraviolet radiation-induced suppression of cutaneous cell-mediated immunity. J Exp Med 191:561–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knoch J, Kamenisch Y, Kubisch C, Berneburg M (2012) Rare hereditary diseases with defects in DNA-repair. Eur J Dermatol 22:4430455

    Google Scholar 

  • Kohl E, Steinbauer J, Landthaler M, Szeimies R-M (2011) Skin ageing. J Eur Acad Dermatol Venereol 25:873–884

    Article  CAS  PubMed  Google Scholar 

  • Kraemer KH, Lee MM, Scotto J (1987) Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 123:241–250

    Article  CAS  PubMed  Google Scholar 

  • Kramata P, Lu YP, Lou YR, Singh RN, Kwon SM, Conney AH (2005) Patches of mutant p53-immunoreactive epidermal cells induced by chronic UVB irradiation harbor the same p53 mutations as squamous cell carcinomas in the skin of hairless SKH-1 mice. Cancer Res 65:3577–3585

    Article  CAS  PubMed  Google Scholar 

  • Kricker A, Armstrong BK, English DR (1994) Sun exposure and non-melanocytic skin cancer. Cancer Causes Control 5:367–392

    Article  CAS  PubMed  Google Scholar 

  • Kricker A, Armstrong BK, English DR, Heenan PJ (1995) Does intermittent sun exposure cause basal cell carcinoma? A case–control study in Western Australia. Int J Cancer 60:489–494

    Article  CAS  PubMed  Google Scholar 

  • Kripke ML (1981) Immunologic mechanisms in UV radiation carcinogenesis. Adv Cancer Res 34:69–106

    Article  CAS  PubMed  Google Scholar 

  • Lavker RM, Kligman AM (1988) Chronic heliodermatitis: a morphologic evaluation of chronic actinic dermal damage with emphasis on the role of mast cells. J Invest Dermatol 90:325–330

    Article  CAS  PubMed  Google Scholar 

  • Lembo S, Fallon J, O’Kelly P, Murphy GM (2008) Polymorphic light eruption and skin cancer prevalence: is one protective against the other? Br J Dermatol 159:1342–1347

    Article  CAS  PubMed  Google Scholar 

  • MacLaughlin JA, Anderson RR, Holick MF (1982) Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photisomers in human skin. Science 216:1001–1003

    Article  CAS  PubMed  Google Scholar 

  • McKinlay AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in humans skin. In: Passhier WF, Bosnjakovic BF (eds) Human exposure to ultraviolet radiation: risks and regulation. Elsevier, Amsterdam, pp 45–52

    Google Scholar 

  • McLoone P, Simics E, Barton A, Norval M, Gibbs NK (2005) An action spectrum for the production of cis-urocanic acid in human skin. J Invest Dermatol 125:1071–1074

    Article  Google Scholar 

  • Naylor EC, Watson RE, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69:249–256

    Article  CAS  PubMed  Google Scholar 

  • Ng RL, Bisley JL, Gorman S, Norval M, Hart PH (2010) Ultraviolet irradiation of mice reduces the competency of bone marrow-derived CD11c+ cells via an indomethacin-inhibitable pathway. J Immunol 185:7207–7215

    Article  CAS  PubMed  Google Scholar 

  • Noonan FP, Bucana C, Sauder DN, De Fabo EC (1984) Mechanism of systemic immune suppression by UV radiation in vivo. II. The UV effects on number and morphology of epidermal Langerhans cells and the UV-induced suppression of contact hypersensitivity have different wavelength dependencies. J Immunol 132:2408–2416

    CAS  PubMed  Google Scholar 

  • Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:884

    Article  PubMed Central  PubMed  Google Scholar 

  • Norval M (2006) The effects of ultraviolet radiation on human viral infections. Photochem Photobiol 86:1495–1504

    Article  Google Scholar 

  • Norval M, Halliday GM (2011) The consequences of UV-induced immunosuppression for human health. Photochem Photobiol 87:965–977

    Article  CAS  PubMed  Google Scholar 

  • Norval M, Woods GM (2011) UV-induced immunosuppression and the efficacy of vaccination. Photochem Photobiol Sci 10:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Novak Z, Berces A, Ronto G, Pallinger E, Dobozy A, Kemeny L (2004) Efficacy of different UV-emitting light sources in the induction of T-cell apoptosis. Photochem Photobiol 79:434–439

    Article  CAS  PubMed  Google Scholar 

  • Parrish JA, Jaenicke KF, Anderson RR (1982) Erythemas and melanogenesis action spectra of normal human skin. Photochem Photobiol 36:187–191

    Article  CAS  PubMed  Google Scholar 

  • Rebel H, Kram N, Westerman A, Banus S, van Kranedn HJ, de Gruijl FR (2005) Relationship between UV-induced mutant p53 patches and skin tumors, analysed by mutation spectra and by induction kinetics in various DNA-repair-deficient mice. Carcinogenesis 26:2123–2130

    Article  CAS  PubMed  Google Scholar 

  • Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C, Kumar K, Blaschke B, Ruzicka T, Reifenberger G (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152:43–51

    Article  CAS  PubMed  Google Scholar 

  • Romani N, Brunner PM, Stingl G (2012) Changing views of the role of Langerhans cells. J Invest Dermatol 132:872–881

    Article  CAS  PubMed  Google Scholar 

  • Rosso S, Zanetti R, Pippioni M, Sancho-Garnier H (1998) Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure. Melanoma Res 8:573–583

    Article  CAS  PubMed  Google Scholar 

  • Schwarz T, Schwarz A (2011) Molecular mechanisms of ultraviolet-radiation-induced immunosuppression. Eur J Cell Biol 90:560–564

    Article  CAS  PubMed  Google Scholar 

  • Schwarz A, Maeda A, Kernbeck K, van Steeg H, Beissert S, Schwarz T (2005) Prevention of UV radiation-induced immunosuppression by IL-12. J Exp Med 201:173–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T (2010) Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 130:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Staples MP, Elwood M, Burton RC, Williams JL, Marks R, Giles GG (2006) Non-melanoma skin cancer in Australia: the 2002 national survey and trends since 1985. Med J Aust 184:6–10

    PubMed  Google Scholar 

  • Taylor CR, Stern R, Leyden JJ, Gilchrest BA (1990) Photoageing, photodamage and photoprotection. J Am Acad Dermatol 22:1–15

    Article  CAS  PubMed  Google Scholar 

  • Toichi E, Lu KQ, Swick AR, McCormick TS, Cooper KD (2008) Skin-infiltrating monocytes/macrophages migrate to draining lymph nodes and produce IL-10 after contact sensitizer exposure to UV-irradiated skin. J Invest Dermatol 128:2705–2715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich SE, Bryne SN (2012) The immunologic revolution: photoimmunology. J Invest Dermatol 132:896–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van der Pols JC, Williams GM, Pandeya N, Logan V, Green AC (2006) Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiol Biomarkers Prev 15:2546–2548

    Article  PubMed  Google Scholar 

  • Vink AA, Schreedhar V, Roza L, Krutmann J, Kripke ML (1998) Cellular target of UVB-induced DNA damage resulting in local suppression of contact hypersensitivity. J Photochem Photobiol B Biol 44:107–111

    Article  CAS  Google Scholar 

  • Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas J-F (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64:1699–1714

    Article  CAS  PubMed  Google Scholar 

  • Walker SL, Young AR (2007) An action spectrum (290–300 nm) for TNFα protein in human skin in vivo suggests that basal-layer epidermal DNA is the chromophore. Proc Natl Acad Sci U S A 104:19051–19054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walls AC, Han J, Li T, Qureshi AA (2013) Host risk factors, ultraviolet index of residence, and incident malignant melanoma in situ among US women and men. Am J Epidemiol. doi:10.1093/aje/kws335

    PubMed Central  PubMed  Google Scholar 

  • Wang L, Jameson SC, Hogquist KA (2009) Epidermal Langerhans cells are not required for UV-induced immunosuppression. J Immunol 183:5548–5553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf P, Byrne SN, Gruber-Wackernagel A (2009) New insights into the mechanisms of polymorphic light eruption: resistance to ultraviolet radiation-induced immune suppression as an aetiological factor. Exp Dermatol 18:350–356

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Wolverton JE, Zhang Q, Marathe GK, Al-Hassani M, Konger RL, Travers JB (2009) Ultraviolet B radiation generated platelet-activating factor agonist formation involves EGF-R-mediated reactive oxygen species. J Immunol 182:2842–2848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yarosh DB (2004) DNA repair, immunosuppression, and skin cancer. Cutis 74(Suppl 5):10–13

    PubMed  Google Scholar 

  • Young AR (1986) The sunburn cell. Photodermatology 4:127–134

    Google Scholar 

  • Zaidi MR, David S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL, Feigenbaum L, Fuchs E, Lyakh L, Young HA, Hornyak TJ, Arnheiter H, Trinchieri G, Meltzer PS, Merlino G (2011) Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 469:548–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Norval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Norval, M. (2015). The Photobiology of Human Skin. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_24

Download citation

Publish with us

Policies and ethics