Skip to main content

The Evolution of Photosynthesis and Its Environmental Impact

  • Chapter
  • First Online:
Photobiology

Abstract

Photosynthesis in plants is a very complicated process, utilizing two photosystems in series to carry out the very energy-demanding process of oxidizing water to molecular oxygen and reducing carbon dioxide to organic compounds. The process of carbon dioxide assimilation, today taking place mainly in conjunction with photosynthesis, appears to be even older than photosynthesis itself. The first photosynthetic organisms, living more than 3.4, perhaps even 3.8 Ga (Ga = gigayears = thousand million years) ago, carried out a simpler process than that observed in plants and likely did not result in oxygen production and only utilized one type of photosystem. A great variety of such one-photosystem photosynthesizers are living even today, and by comparing them, and from chemical fossils, researchers are trying to piece together a picture of the course of the earliest evolution of photosynthesis. Chlorophyll a may have preceded bacteriochlorophyll a as a main pigment for conversion of light into life energy. Oxygenic photosynthesis, i.e., photosynthetic production of molecular oxygen, first appeared in ancestors of present-day cyanobacteria more than 2.7, perhaps already 3.7 Ga ago. Cyanobacteria entered into close association with other organisms more than 1.2 Ga ago. There are indications that chloroplasts in green algae and green plants as well as those in glaucophytes and algae on the “red” line of evolution (red algae, cryptophytes, diatoms, brown algae, yellow-green algae, and others) originated from a single early event of endosymbiotic uptake of a cyanobacterium into a heterotrophic organism. A single event of secondary endosymbiosis, in which a red algal-like organism was taken up into another eukaryote, resulted in the diversity of organisms in the “red line” of algae that is also extended by tertiary (third level) endosymbiotic events. At the end of this chapter, a brief review is given of the evolution of the assimilation of carbon dioxide, the adaptation to terrestrial life, and the impact of photosynthesis on the terrestrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JF (2005) A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett 579:963–968

    CAS  PubMed  Google Scholar 

  • Allen JF, Martin W (2007) Out of thin air. Nature 445:61–612

    Google Scholar 

  • Allgaier M, Uphoff H, Felske A, Wagner-Döbler I (2003) Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059. doi:10.1128/AEM.69.9.5051-5059.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anbar AD, Holland HD (1992) The photochemistry of manganese and the origin of banded iron formations. Geochim Cosmochim Acta 56:2595–2603

    CAS  PubMed  Google Scholar 

  • Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297:1137–1142

    CAS  PubMed  Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    CAS  PubMed  Google Scholar 

  • Anderson JM (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust J Plant Physiol 26:625–639

    CAS  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B Biol 43:87–100

    CAS  Google Scholar 

  • Asard H, Venken M, Caubergs R, Reijnders W, Oltmann FL, De Greef JA (1989) b-Type cytochromes in higher plant plasma membranes. Plant Physiol 90:1077–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:287–290

    Google Scholar 

  • Ashida H, Danchin A, Yokota A (2005) Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res Microbiol 156:611–618

    CAS  PubMed  Google Scholar 

  • Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33:75–89

    CAS  Google Scholar 

  • Bader KP (1994) Physiological and evolutionary aspects of the O2/H2O2 cycle in cyanobacteria. Biochim Biophys Acta 1188:213–219

    Google Scholar 

  • Badger MR, Price GD (2003) CO2-concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    CAS  PubMed  Google Scholar 

  • Bald D, Kruip J, Boekema EJ, Rögner M (1992) Structural investigations on cyt b6 f complex and PS I complex from the cyanobacterium Synechocystis PCC6803. In: Murata N (ed) Photosynthesis: from light to biosphere, Part I. Kluwer Academic Publishers, Dordrecht, pp 629–633

    Google Scholar 

  • Battistuzzi FU, Andreia Feijao A, Blair Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolut Biol 4:44, 14 pp

    Google Scholar 

  • Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BJ, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709

    CAS  PubMed  Google Scholar 

  • Baymann F, Brugna M, Muhlenhoff U, Nitschke W (2001) Daddy, where did (PS)I come from? Biochim Biophys Acta 1507:291–310

    CAS  PubMed  Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley GF (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci U S A 102:9306–9310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    CAS  PubMed  Google Scholar 

  • Beerling DJ, Lake JA, Berner RA, Hickey JJ, Taylor DW, Royer DL (2002) Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere. Geochim Cosmochim Acta 66:3757–3767

    CAS  Google Scholar 

  • Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planetary Sci Lett 317–318:295–304

    Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    CAS  PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    CAS  PubMed  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    CAS  Google Scholar 

  • Bhattcharaya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects dots. Bioessays 26:50–60

    Google Scholar 

  • Björn LO (1995) Origins of photosynthesis. Nature 376:25–26

    Google Scholar 

  • Björn LO, Ekelund NGA (2005) Dinoflagellater—hopplock från livets smörgåsbord. Svensk Bot Tidskr 99:7–16

    Google Scholar 

  • Björn LO, Govindjee (2009) The evolution of photosynthesis and chloroplasts. Curr Sci 96:1466–1474

    Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009a) A viewpoint: why chlorophyll a? Photosynth Res 99:85–98

    PubMed  Google Scholar 

  • Björn LO, Papageorgiou GC, Dravins D, Govindjee (2009b) Detectability of life on exoplanets. Curr Sci 96:1171–1175

    Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–100

    CAS  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis. 2nd Edition, Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    CAS  PubMed  Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds.) (1995) Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis and Respiration, vol. 3, Springer, Dordrecht

    Google Scholar 

  • Bocherens H, Friis EM, Mariotti A, Pedersen KR (1993) Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants—paleoecological implications. Lethaia 26:347–358

    Google Scholar 

  • Borda MJ, Elsetinow AR, Schoonen MA, Strongin DR (2001) Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology 1:283–288

    CAS  PubMed  Google Scholar 

  • Brasier MD, Green OR, Lindsay JF, McLoughlin N, Steele A, Stoakes C (2005) Precambrian Res 140:55–102

    CAS  Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroups, Hamersley Basin, Western Australia. Beochim Cosmochim Acta 67:4321–4335

    CAS  Google Scholar 

  • Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 18:488–496

    Google Scholar 

  • Buchanan BB, Arnon DI (1990) A reverse Krebs cycle in photosynthesis: consensus at last. Photosynth Res 24:47–53

    CAS  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Google Scholar 

  • Campbell IH, Allen CM (2008) Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci 1:554–558

    CAS  Google Scholar 

  • Canfield DE (1998) A new model for proterozoic ocean chemistry. Nature 396:450–453

    CAS  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: Homage to R.M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    CAS  Google Scholar 

  • Canfield DE, Poulton SW, Narbonne GM (2007) Late Neo-Proterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95

    CAS  PubMed  Google Scholar 

  • Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Dan Asael D, Pierson-Wickmann A-C, El Albani A (2013) Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chew AGM, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    CAS  PubMed  Google Scholar 

  • Clausen J, Beckmann K, Junge W, Messinger J (2005a) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol 139:1444–1450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clausen J, Junge W, Dau H, Haumann M (2005b) Photosynthetic water oxidation at high O2 backpressure monitored by delayed chlorophyll fluorescence. Biochemistry 44:12775–12779

    CAS  PubMed  Google Scholar 

  • Crowe SE, Døssing LA, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–539

    CAS  PubMed  Google Scholar 

  • Dashdori N, Zhang H, Kim H, Yan J, Cramer WA, Savikhin S (2005) The single chlorophyll a molecule in the cytochrome b6 f complex, unusual optical properties protect the complex against singlet oxygen. Biophys J 88:4178–4187

    Google Scholar 

  • Decker JE, de Wit MJ (2006) Carbon isotope evidence for CAM photosynthesis in the Mesozoic. Terra Nova 18:9–17

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Mattoo A (eds) (2006) Photoprotection, photoinhibition, gene regulation, and environment. Springer, New York

    Google Scholar 

  • Demmig-Adams S, Garab G, Adams W III, Govindjee (eds) (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, vol 40, Advances in photosynthesis and respiration. Springer, Dordrecht

    Google Scholar 

  • Dismukes GC, Klimo VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science (NS) 152:363–366

    CAS  Google Scholar 

  • Eickhoff M, Birgel D, Talbot HM, Peckmann J, Kappler A (2013) Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1. Geobiology 11:268–278

    CAS  PubMed  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci U S A 105:17199–17204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans MC, Buchanan BB, Arnon DI (1966) A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A 55:928–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic Photosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309:2202–2204

    CAS  PubMed  Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107:11–36

    CAS  PubMed  Google Scholar 

  • Fennel K, Follows M, Falkowski PG (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci 305:526–545

    CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Nature 303:1831–1837

    CAS  Google Scholar 

  • Flament N, Coltice N, Rey PF (2013) The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precamb Res 229:177–188

    CAS  Google Scholar 

  • Fliegel D, Kosler J, McLoughlin N, Simonetti A, de Wit MJ, Wirth R, Furnes H (2010) In-situ dating of the Earth’s oldest trace fossil at 3.34 Ga. Earth Planet Sci Lett 299:290–298

    CAS  Google Scholar 

  • Frigaard N-U, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    CAS  PubMed  Google Scholar 

  • Fru EC, Ivarsson M, Kilias SP, Bengtson S, Belivanova V, Marone F, Fortin D, Broman C, Stampanoni M (2013) Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation. Nat Comm 4(2050):7

    Google Scholar 

  • Geider RJ, Delucia EH, Falkowski GD et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882

    Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Physiol 56:99–131

    Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, New York

    Google Scholar 

  • Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348

    Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469

    CAS  PubMed  Google Scholar 

  • Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J (2011) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358

    Google Scholar 

  • Gómez-Consarnau L, González JM, Coll-Llado M, Gourdon P, Pascher T, Richard Neutze R, Pedrós-Alió C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Google Scholar 

  • González JM, Fernandez-Gomez B, Fernandez-Guerra A, Gómez-Consarnau L, Sanchez O, Coll-Llado M, del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp.MED152 (Flavobacteria). Proc Natl Acad Sci U S A 105:8724–8729

    Google Scholar 

  • Gough DO (1981) Solar interior structure and luminosity variations. Solar Physics 74:21–34

    CAS  Google Scholar 

  • Govindjee (2000) Milestones in photosynthesis research. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 9–39

    Google Scholar 

  • Govindjee, Björn LO (2012) Dissecting oxygenic photosynthesis: the evolution of the “Z”-scheme for thylakoid reactions. Chapter 1. In: Shigeru I, Prasanna M, Guruprasad KN (eds) Photosynthesis: overviews on recent progress & future perspective. IK International Publishing House Pvt. Ltd, New Delhi, pp 1–27

    Google Scholar 

  • Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Granick S (1957) Speculations on the origins and evolution of photosynthesis. Ann NY Acad Sci 69:292–308

    CAS  PubMed  Google Scholar 

  • Gu Y, Li P, Sage JT, Champion PM (1993) Photoreduction of heme proteins: spectroscopic studies and cross-section measurements. J Am Chem Soc 115:4993–5004

    CAS  Google Scholar 

  • Gupta RS (2013) Molecular markers for photosynthetic bacteria and insights into the origin and spread of photosynthesis. Adv Bot Res 66:37–65

    CAS  Google Scholar 

  • Gutiérrez-Cirlos EB, Pérez-Gómez B, Krogmann DW, Gómez-Lojero C (2006) The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim Biophys Acta 1757:130–134

    PubMed  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706:68–80

    CAS  PubMed  Google Scholar 

  • Hakala M, Rantamäki S, Puputti E-M, Tyystjärvi T, Tyystjärvi E (2006) Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J Exp Bot 57:1809–1816

    CAS  PubMed  Google Scholar 

  • Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD (2004) Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planetary Sci Lett 225:43–52

    CAS  Google Scholar 

  • Hao SG, Beck CB, Wang DM (2003) Structure of the earliest leaves: adaptations to high concentrations of atmospheric CO2. Intern J Plant Sci 164:71–75

    Google Scholar 

  • Härtner T, Straub KL, Kannenberg E (2005) Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiol Lett 243:59–64

    PubMed  Google Scholar 

  • Hattersley PW (1982) 13C values of C4 types in grasses. Aust J Plant Physiol 9:139–154

    CAS  Google Scholar 

  • Haworth M, Hesselbo SP, McElwain JC, Robinson SA, Brunt J (2005) Mid- Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33:749–752

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    CAS  PubMed  Google Scholar 

  • Hervás M, Navarro JA, de la Rosa MA (2003) Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 36:798–805

    PubMed  Google Scholar 

  • Hess WR, Partensky F, van der Staay GWM, Garcia Fernandez JM, Borner T, Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci U S A 93:11126–11130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirabayashi H, Ishii T, Takaichi S, Inoue K, Uehara K (2004) The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 79:280–285

    CAS  PubMed  Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073

    Google Scholar 

  • Holert J, Hahnke S, Cypionka H (2011) Influence of light and anoxia on chemiosmotic energy conservation in Dinoroseobacter shibae. Environ Microbiol Rep 3:136–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland HH (2009) Why the atmosphere became oxygenated: a proposal. Geochim Cosmochim Acta 73:5241–5255

    CAS  Google Scholar 

  • Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498

    CAS  PubMed  Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Felix Autenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Quart Revs Biophys 35:1–62

    CAS  Google Scholar 

  • Huang D, Everly RM, Cheng RH, Heymann JB, Schagger H, Sled V, Ohnishi T, Baker TS, Cramer WA (1994) Characterization of the chloroplast cytochrome b f complex as a structural and functional dimer. Biochemistry 33:4401–4409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial late Permian extinctions. Science 308:398–401

    CAS  PubMed  Google Scholar 

  • Hügler M, Hüber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    PubMed  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty J.T(Eds.) (2009) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol. 28, Springer, Dordrecht

    Google Scholar 

  • Inda LA, Erdner DL, Peleato ML, Anderson DM (1999) Cytochrome c6 isolated from the marine diatom Thalassiosira weissflogii. Phytochemistry 51:1–4

    CAS  Google Scholar 

  • Jahren AH, Porter S, Kuglitsch JJ (2003) Lichen metabolism identified in early Devonian terrestrial organisms. Geology 31:99–102

    CAS  Google Scholar 

  • Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG, Bamberg E, Wachtveitl J, Bamann C (2013) Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 52:2750–2763. http://dx.doi.org/10.1021/bi301412n

  • Johnson JE, Webb SM, Thomas K, Ono S, Kirschwink JL, Fischer WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci U S A 110:11238–11243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868

    CAS  Google Scholar 

  • Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867–870

    CAS  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    CAS  PubMed  Google Scholar 

  • Ke B (2001) Photosynthesis: photobiochemistry and photobiophysics. Springer, Dordrecht

    Google Scholar 

  • Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164(3 Suppl):S55–S77

    CAS  Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007) Spectral signatures of photosynthesis I review of earth organisms. Astrobiology 7:252–274

    CAS  PubMed  Google Scholar 

  • Kirchman DL, Hanson TE (2013) Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep 5:188–199

    CAS  PubMed  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consquences. Proc Natl Acad Sci U S A 97:1400–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleine T, Münker C, Mezger K, Palmer H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 952–955

    Google Scholar 

  • Kopp RE, Kirschwink J-L, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A 102:11131–11136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krapež B, Barley MA, Pickard AL (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the early Palaeoproterozoic Brockman supersequence of Western Australia. Sedimentology 50:979–1011

    Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    CAS  PubMed  Google Scholar 

  • Kump LR, Junium C, Arthur MA, Brasier A, Fallick A, Melezhik V, Lepland A, Crne AE, Luo G (2011) Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334:1694–1696

    CAS  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    CAS  PubMed  Google Scholar 

  • Lenton T (2001) The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob Chang Biol 7:613–629

    Google Scholar 

  • Levrard B, Laskar J (2003) Climate friction and the earth’s obliquity. Geophys J 154:970–990

    Google Scholar 

  • Liang M-C, Hartman H, Kopp RE, Kirschvink JL, Yung YL (2006) Production of hydrogen peroxide in the atmosphere of a snowball Earth and the origin of oxygenic photosynthesis. Proc Natl Acad Sci U S A 103:18896–18899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovelock JE (1979) Gaia: a new look at life on Earth. Oxford University Press, New York, p xi+157

    Google Scholar 

  • Löwenich D, Kleinermanns K, Karunakaran V, Kovalenko SA (2008) Transient and stationary spectroscopy of cytochrome c: ultrafast internal conversion controls photoreduction. Photochem Photobiol 84:193–201

    PubMed  Google Scholar 

  • Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    CAS  PubMed  Google Scholar 

  • Markham KR, Porter LJ (1969) Flavonoids in the green algae (Chlorophyta). Phytochemistry 8:1777–1781

    CAS  Google Scholar 

  • Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149

    CAS  PubMed  Google Scholar 

  • Mauzerall D (1976) Chlorophyll and photosynthesis. Philos Trans R Soc Lond B Biol Sci 273:287–294

    CAS  Google Scholar 

  • McCarren J, DeLong EF (2007) Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Envir Microbiol 9:846–858

    CAS  Google Scholar 

  • McElwain JC (1998) Do fossil plants signal palaeatmospheric CO2 concentration in the geological past? Philos Trans R Soc Lond B Biol Sci 353:83–96

    PubMed Central  Google Scholar 

  • McElwain JC, Mitchell FJG, Jones MB (1995) Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. The Holocene 5:539–570

    Google Scholar 

  • McElwain JC, Mayle FE, Beerling DJ (2002) Stomatal evidence for a decline in atmospheric CO concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. J Quat Sci 17:21–29

    Google Scholar 

  • Mercer-Smith JA, Mauzerall D (1981) Molecular hydrogen production by uroporphyrin and coproporphyrin: a model for the origin of photosynthetic function. Photochem Photobiol 34:407–410

    CAS  Google Scholar 

  • Moorbath S (2005) Palaebiology: dating the earliest life. Nature 434:155

    CAS  PubMed  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2013) A time to scatter genes and a time to gather them: evolution of photosynthesis genes in bacteria. Adv Bot Res 66:1–35

    CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson N, Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73:193–206

    CAS  PubMed  Google Scholar 

  • Nelson N, Ben-Shem A (2005) The structure of photosystem I and evolution of photosynthesis. Bioessays 27:914–922

    CAS  PubMed  Google Scholar 

  • Nisbet EG, Cann JR, van Dover C (1995) Origins of photosynthesis. Nature 373:479–480

    CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117

    CAS  PubMed  Google Scholar 

  • Olson JM, Pierson BK (1987) Origin and evolution of photosynthetic reaction centers. Orig Life 17:419–430

    CAS  Google Scholar 

  • Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans Roy Soc B Biol Sci 361:173–194

    Google Scholar 

  • Partin C-A, Bekker A, Planavsky NJ, Scott CT, Gill BC, Li C, Podkovyrov V, Maslov A, Konhauser KO, Lalonde SV, Love GD, Poulton SW, Lyons TW (2013) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett 369–370:284–293

    Google Scholar 

  • Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    CAS  PubMed  Google Scholar 

  • Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “green” phosphoribulokinase in complex algae with red plastids: evidence from a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol 23:1109–1118

    CAS  Google Scholar 

  • Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S (2012) Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol 14:2661–2672

    CAS  PubMed  Google Scholar 

  • Petersen J, Frank O, Göker M, Pradella S (2013) Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol 97:2805–2815. doi:10.1007/s00253-013-4746-8

    CAS  PubMed  Google Scholar 

  • Pierre J, Bazin M, Debey P, Santus R (1982) One-electron photo-reduction of bacterial cytochrome P450 by ultraviolet light. 1. Steady-state measurements. Eur J Biochem 124:533–537

    CAS  PubMed  Google Scholar 

  • Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot J-L (1997) On the presence and role of a molecule of chlorophyll a in the cytochrome b f complex. J Biol Chem 272:21901–21908

    CAS  PubMed  Google Scholar 

  • Raghavendra AS, Sage R (eds.) (2011) C4 photosynthesis and related CO2 concentrating mechanisms. Advances in Photosynthesis and Respiration, Vol. 32, Springer, Dordrecht

    Google Scholar 

  • Rascio N (2002) The underwater life of secondarily aquatic plants: some problems and solutions. Crit Rev Plant Sci 21:401–427

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn RR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    CAS  PubMed  Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    CAS  Google Scholar 

  • Raven JA, Kübler JE, Beardall J (2000) Put out the light and then put out the light. J Mar Biol Ass UK 80:1–25

    CAS  Google Scholar 

  • Raymond J, Blankenship RE (2003) Horizontal gene transfer in eukaryotic algal evolution. Proc Natl Acad Sci U S A 100:7419–7420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Blankenship RE (2003a) Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Philos Trans R Soc Lond B Biol Sci 358:223–230

    PubMed Central  PubMed  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2003b) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    PubMed  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    CAS  PubMed  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Retallack GJ (2002) Carbon dioxide and climate over the past 300 Myr. Philos Trans R Soc Lond B Biol Sci 360:659–673

    CAS  Google Scholar 

  • Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M et al (2010) The proteorhodopsin gene is expressed constitutively by a Flavobacterium representative of the proteorhodopsin carrying microbial community in the North Sea. Appl Environ Microbiol 76:3187–3197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of Chlorarachniophyte and Euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    CAS  PubMed  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland— indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    CAS  Google Scholar 

  • Rubinstein B (1993) Plasma membrane redox processes: components and role in plant processes. Annu Rev Plant Physiol Plant Mol Biol 44:131–155

    CAS  Google Scholar 

  • Rutherford AW, Faller P (2003) Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 358:245–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutherford AW, Nitschke W (1996) Photosystem II and the quinone-iron-consisting reaction centers: comparisons and evolutionary perspectives. In: Baltscheffsky H (ed) Origin and evolution of biological energy conversion. Wiley-VCH, New York, pp 143–175

    Google Scholar 

  • Sackmann IJ, Boothroyd AI (2003) Our Sun. V. A bright young Sun consistent with helioseismology and warm temperatures on ancient earth and mars. Astrophys J 583:1024–1039

    CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    CAS  Google Scholar 

  • Samuilov VD, Bezryadnov DB, Gusev MV, Kitasov AV, Fedorenko TA (2001) Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacteria. Biochemistry (Mosc) 66:640–645

    CAS  Google Scholar 

  • Sauer K, Yachandra VK (2002) A possible evolutionary origin for the Mn-4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci U S A 99:8631–8636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoepp-Cothenet B, van Lis R, Atteia A, Baymann F, Capowiez L, Ducluzeau A-L, Duval S, ten Brink F, Russell MJ, Wolfgang Nitschke W (2013) On the universal core of bioenergetics. Biochim Biophys Acta 1827:79–93

    CAS  PubMed  Google Scholar 

  • Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on earth-like planets around other stars. Astrobiology 3:689–708

    CAS  PubMed  Google Scholar 

  • Sekine Y, Suzuki K, Senda R, Goto KT, Tajika E, Tada R, Goto K, Yamamoto S, Ohkouchi N, Ogawa NO, Maruoka T (2011) Osmium evidence for synchronicity between a rise in atmospheric oxygen and Palaeoproterozoic deglaciation. Nat Comm 2:1–5

    Google Scholar 

  • Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71:175–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:R567–R574

    CAS  PubMed  Google Scholar 

  • Shevela D, Eaton-Rye JJ, Shen J-R, Govindjee (2012) Photosystem II and unique role of bicarbonate: a historical perspective. Biochim Biophys Acta 1817:1134–1151

    CAS  PubMed  Google Scholar 

  • Shevela D, Nöring B, Koroidov S, Shutova T, Samuelsson G, Messinger J (2013) Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon. Photosynth Res 117:401–412

    CAS  PubMed  Google Scholar 

  • Sousa FL, Shavit-Grievink L, Allen JF, Martin WF (2013a) Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 5:200–216

    PubMed Central  PubMed  Google Scholar 

  • Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF (2013b) Early bioenergetic evolution. Philos Trans R Soc B 368:20130088

    Google Scholar 

  • Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ (2011) Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6:e19725. doi:10.1371/journal.pone.0019725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ (2007) The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol 73:2290–2296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoebe B, Maier U-G (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130

    PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L, Picot D (2003) An atypical haem in the cytochrome b6 f complex. Nature 426:413–418

    CAS  PubMed  Google Scholar 

  • Strömberg CAE, McInerney FA (2011) The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology 37:50–71

    Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    CAS  PubMed  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    CAS  PubMed  Google Scholar 

  • Tajika E (2003) Faint young sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth Planet Sci Lett 214:443–453

    CAS  Google Scholar 

  • Tapley DW, Buettner GR, Shick JM (1999) Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol Bull 196:52–56

    CAS  Google Scholar 

  • Taylor WA, Free C, Boyce C, Helgemo R, Ochoada J (2004) SEM analysis of Spongiophyton interpreted as a fossil lichen. Int J Plant Sci 165:875–881

    Google Scholar 

  • Thauer RK, Kaster A-C, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Revs Microbiol 6:579–591

    CAS  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416 Myr-old ocean. Nature 431:549–552

    CAS  PubMed  Google Scholar 

  • Tice MM, Lowe DR (2006) Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40

    CAS  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103:5442–5447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Google Scholar 

  • Van Rensen JJS, Xu C, Govindjee (1999) Role of bicarbonate in Photosystem II, the water—plastoquinone oxido-reductase of plant photosynthesis. Physiol Plant 105:585–592

    Google Scholar 

  • Wagner-Döbler I, Biebl H (2006) Environmental Biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280

    PubMed  Google Scholar 

  • Wang Z, O’Shaughnessy TJ, Soto CM, Rahbar AM, Robertson KL, Lebedev N, Vora GJ (2012) Function and regulation of Vibrio campbellii proteorhodopsin: acquired phototrophy in a classical organoheterotroph. PLoS One 7:e38749. doi:10.1371/journal.pone.0038749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warburg O, Krippahl G, Jetschma C (1965) Widerlegung der Photolyse des Wassers und Beweis der Photolyse der Kohlensäure nach Versuchen mit lebender Chlorella und den Hill-Reagentien Nitrat und K Fe(Cn). Z Naturforsch B B20:993–996

    Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    CAS  PubMed  Google Scholar 

  • Westall F, Cavalazzi B, Lemelle L, Marrocchi Y, Rouzaud J-N, Simionovici A, Salomé M, Mostefaoui S, Andreazza C, Foucher F, Toporski J, Jauss A, Thiel V, Southam G, MacLean L, Wirick S, Hofmann A, Meibom A, Robert F, Défarge C (2011) Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479

    CAS  Google Scholar 

  • White SN, Chave AD, Reynolds GT, Gaidos EJ, Tyson JA, Van Dover CL (2000) Variations in ambient light emission from black smokers and flange pools on the Juan de Fuca Ridge. Geophys Res Lett 27:1151–1154

    Google Scholar 

  • White SN, Chave AD, Reynolds GT (2002) Investigations of ambient light emission at deep-sea hydrothermal vents. J Geophys Res Solid Earth 107 (B1), Art. No. 2001

    Google Scholar 

  • White SN, Chave AD, Reynolds GT, Van Dover CL (2002) Ambient light emission from hydrothermal vents on the. Mid-Atlantic Ridge. Geophys Res Lett 29, Art. No. 1744

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature 409:175–178

    CAS  PubMed  Google Scholar 

  • Williams DM, Kasting JF, Frakes LA (1998) Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback. Nature 396:453–455

    CAS  PubMed  Google Scholar 

  • Woese CR (2005) The archaeal concept and the world it lives in: a retrospective. In: Govindjee, Beatty JT, Gest H, Allen JF (eds) Discoveries in photosynthesis. Springer, Dordrecht, pp 1109–1120

    Google Scholar 

  • Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II — the light-driven water: plastoquinone oxidoreductase (advances in photosynthesis and respiration 22). Springer, Dordrecht

    Google Scholar 

  • Xiong J, Bauer CE (2002a) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link betweeen respiration and photosynthesis. J Mol Biol 322:1025–1037

    CAS  PubMed  Google Scholar 

  • Xiong J, Bauer CE (2002b) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    CAS  PubMed  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4 Ca cluster. Science 314:821–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albarède F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952

    CAS  PubMed  Google Scholar 

  • Yoshi Y (2006) Diversity and evolution of photosynthetic antenna systems in green plants. Phycol Res 54:220–229

    Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    CAS  PubMed  Google Scholar 

  • Yutin N, Koonin EV (2012) Proteorhodopsin genes in giant viruses. Biol Direct 7(34):6

    Google Scholar 

  • Zahnle KJ, Catling DC, Claire MW (2013) The rise of oxygen and the hydrogen hourglass. Chem Ecol 362:26–34

    CAS  Google Scholar 

  • Zhang BP, Janicke MT, Woodruff WH, Bailey JA (2005) Photoreduction of a heme peptide encapsulated in nanostructured materials. J Phys Chem B 109:19547–19549

    CAS  PubMed  Google Scholar 

  • Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64

    PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to George C. Papageorgiou for careful reading of the manuscript and many valuable suggestions. Govindjee thanks B.C. Tripathy, P.K. Mohapatra, S.K. Nayak, and P.K. Jena for their hospitality, while he was a Visiting Professor in Botany at Ravenshaw University, Cuttack, Odisha, India, during January–March, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olof Björn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björn, L.O., Govindjee (2015). The Evolution of Photosynthesis and Its Environmental Impact. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_16

Download citation

Publish with us

Policies and ethics