Skip to main content

The Diversity of Eye Optics

  • Chapter
  • First Online:
Photobiology
  • 3129 Accesses

Abstract

This chapter starts with a description of the optics of camera-type eyes, in which an image is projected upon a retina with cornea and lens as refracting elements. Ray tracing is explained with the human eye as an example of a terrestrial vertebrate’s eye. Then the comparison is made to camera eyes of aquatic and amphibious animals, with an explanation of different kinds of aberrations, difficulties in accommodation to air and water as external media, and different solutions to these problems. A brief section deals with feedback regulation of eye development, and another one with eyes of particularly high light sensitivity. A section on compound eyes explains the difference between apposition and superposition eyes. It is pointed out that geometric optics (ray optics) is not adequate for analyzing the function of the small components of these eyes, and an introduction is given to waveguide and mode theory. This is followed by sections on antireflective nipple arrays, eyes with reflective optics, scanning eyes, and this chapter concludes with a treatise of the evolution of eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad ST, Joyce MV, Boggess B, O’Tousa JE (2006) The role of Drosophila ninaG oxidoreductase in visual pigment chromophore biogenesis. J Biol Chem 281:9205–9209

    Article  CAS  PubMed  Google Scholar 

  • Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412:819–822

    Article  CAS  PubMed  Google Scholar 

  • Angel JRP (1979) Lobster eyes as x-ray telescopes. Astrophys J 233:364–373

    Article  CAS  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    Article  CAS  PubMed  Google Scholar 

  • Backfisch B, Rajan VBV, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci USA 110:193–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor ER (1967) Air and water vision of the Atlantic flying fish, Cypselurus heterurus. Nature 214:307–308

    Article  CAS  PubMed  Google Scholar 

  • Belušič G, Pirih P, Stavenga DG (2013) A cute and highly contrast-sensitive superposition eye – the diurnal owlfly Libelloides macaronius. J Exp Biol 216:2081–2088

    Article  PubMed  Google Scholar 

  • Bernhard CG, Miller WH (1962) A corneal nipple pattern in insect compound eyes. Acta Physiol Scand 56:385–386

    Article  CAS  PubMed  Google Scholar 

  • Bernhard CG, Møller AR, Miller WH (1963) Function of corneal nipples in compound eyes of insects. Acta Physiol Scand 58:381–382

    Article  CAS  PubMed  Google Scholar 

  • Bernhard CG, Miller WH, Møller AR (1965) Insect corneal nipple array—a biological broad-band impedance transformer that acts as an antireflection coating. Acta Physiol Scand S 63(5- Suppl):243

    Google Scholar 

  • Bernhard CG, Gemne G, Sällström J (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Zschr Vergl Physiol 67:1–25

    Article  Google Scholar 

  • Blevins E, Johnsen S (2004) Spatial vision in the echinoid genus Echinometra. J Exp Biol 207:4249–4253

    Article  PubMed  Google Scholar 

  • Chen Y, Zhang Y, Jiang TX, Barlow AJ, St Amand TR, Hu Y, Heaney S, Francis-West P, Chuong CM, Maas R (2000) Conservation of early odontogenic signaling pathways in Aves. Proc Natl Acad Sci USA 97:10044–10049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber AY, Hynninen PH (1998) Dragon fish see using chlorophyll. Nature 393(6684):423–424

    Article  CAS  Google Scholar 

  • Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res 39:2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Duparré JW, Wippermann FC (2006) Micro-optical artificial compound eyes. Bioinsp Biomim 1:R1–R16

    Article  PubMed  Google Scholar 

  • Fernald RD (2000) Evolution of eyes. Curr Opin Neurobiol 10:444–450

    Article  CAS  PubMed  Google Scholar 

  • Fleishman LJ, Howland HC, Howland MJ, Rand RS, Davenport ML (1988) Crocodiles don’t focus underwater. J Comp Physiol A 163:441–443

    Article  CAS  PubMed  Google Scholar 

  • Fortey R, Chatterton B (2003) A Devonian trilobite with an eyeshade. Science 301:1689

    Article  PubMed  Google Scholar 

  • Francis D (1967) On the eyespot of the dinoflagellate Nematodinium. J Exp Biol 47:495–501

    CAS  PubMed  Google Scholar 

  • Frost BJ (1975) Eye movements in Daphnia pulex (De Geer). J Exp Biol 62:175–187

    CAS  PubMed  Google Scholar 

  • Gaffney MF, Hodos W (2003) The visual acuity and refractive state of the American kestrel (Falco sparverius). Vision Res 43:2053–2093

    Article  PubMed  Google Scholar 

  • Gál J, Horváth G, Clarkson ENK, Haiman O (2000) Image formation by bifocal lenses in a trilobite eye? Vision Res 40:843–853

    Article  PubMed  Google Scholar 

  • Gaten E (1994) Geometrical optics of a galatheid compound eye. J Comp Physiol A 175:749–759

    Article  Google Scholar 

  • Gehring WJ (2005) New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered 96:171–184

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (1983) Hen’s teeth and horse’s toes. W.W. Norton, New York

    Google Scholar 

  • Graham JB, Rosenblatt RH (1970) Aerial vision: unique adaptation in an intertidal fish. Science 168:586–588

    Article  CAS  PubMed  Google Scholar 

  • Gregory RL, Ross HE, Moray N (1964) The curious eye of Copilia. Nature 201:1166–1168

    Article  Google Scholar 

  • Grémillet D, Kuntz G, Gilbert C, Woakes AJ, Butler PJ, le Maho Y (2005) Cormorants dive through the polar night. Biol Lett 1:469–471

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006) Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vision Res 46:837–847

    Article  PubMed  Google Scholar 

  • Harris MP, Hasso SM, Ferguson MWJ, Fallon JF (2006) The development of archosaurian first-generation teeth in a chicken mutant. Curr Biol 16:371–377

    Article  CAS  PubMed  Google Scholar 

  • Herman LM, Peacock MF, Ynkeer MP, Madsen CJ (1975) Bottlenosed dolphin: double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189:650–652

    Article  CAS  PubMed  Google Scholar 

  • Hooke R (1665) Micrographia: or, some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. J. Martyn and J. Allestry, London

    Google Scholar 

  • Horridge GA (2002) The design of the compound eye depends on the physics of light. In: Björn LO (ed) Photobiology: the science of light and life. Kluwer Academic Publishers, Dordrecht, pp 181–218

    Chapter  Google Scholar 

  • Horridge GA (2005) The spatial resolutions of the apposition compound eye and its neurosensory feature detectors: observation versus theory. J Insect Physiol 51:243–266

    Article  CAS  PubMed  Google Scholar 

  • Isayama T, Alexeev D, Makino CL, Washington I, Nakanishi K, Turro NJ (2006) An accessory chromophore in red vision. Nature 443:649

    Article  CAS  PubMed  Google Scholar 

  • Iwaya M, Kasugai H, Kawashima T, Iida K, Honshio A, Miyake Y, Kamiyama S, Amano H, Akasaki I (2006) Improvement in light extraction efficiency in group III nitride-based light-emitting diodes using moth-eye structure. Thin Solid Films 515:768–770

    Article  CAS  Google Scholar 

  • Jackson E, Johnsen S (2011) Orientation to objects in the sea urchin Strongylocentrotus purpuratus depends on apparent and not actual object size. Biol Bull 220:86–88

    PubMed  Google Scholar 

  • Jagger WS (1992) The optics of the spherical fish lens. Vision Res 32:1271–1284

    Article  CAS  PubMed  Google Scholar 

  • Jagger WS (1997) Chromatic and monochromatic optical resolution in the rainbow trout. Vision Res 37:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Jagger WS, Sands PJ (1996) A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout. Vision Res 36:2623–2639

    Article  CAS  PubMed  Google Scholar 

  • Jagger WS, Sands PJ (1999) A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res 39:2841–2853

    Article  CAS  PubMed  Google Scholar 

  • Jermann T, Senn DG (1992) Amphibious vision in Coryphoblennius galerita L. (Perciformes). Experientia 48:217–218

    Article  CAS  PubMed  Google Scholar 

  • Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol 206:833–841

    Article  PubMed  Google Scholar 

  • Kollar EJ, Fisher C (1980) Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207:993–995

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J (2003) Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5:773–785

    Google Scholar 

  • Kröger RHH, Campbell MCW (1996) Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni. J Opt Soc Am A 13:2341–2347

    Article  Google Scholar 

  • Kröger RHH, Fernald RD (1994) Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Res 34:1807–1814

    Article  PubMed  Google Scholar 

  • Kröger RHH, Wagner HJ (1996) The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration. J Comp Physiol A 179:837–842

    Article  PubMed  Google Scholar 

  • Kröger RHH, Campbell MCW, Fernald RD, Wagner HJ (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J Comp Physiol A 184:361–369

    Article  PubMed  Google Scholar 

  • Kröger RHH, Campbell MCW, Fernald RD (2001) The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni. Vision Res 41:549–559

    Article  PubMed  Google Scholar 

  • Land MF (1978) Animal eyes with mirror optics. Sci Am 239:126–134

    Article  Google Scholar 

  • Land MF (1982) Scanning eye movements in a heteropod mollusc. J Exp Biol 96:427–430

    Google Scholar 

  • Land MF (2000) Eyes with mirror optics. J Opt A Pure Appl Opt 2:R44–R50

    Article  Google Scholar 

  • Land MF, Nilsson DE (2012) Animal eyes (2nd ed.). Oxford University Press, Oxford, p 271. ISBN 978-0-19-958114-6

    Book  Google Scholar 

  • Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 18:1148–1150

    Article  Google Scholar 

  • Liou HL, Brennan NA (1997) Anatomically accurate, finite model eye for optical modeling. J Opt Soc Am A 14:1684–1695

    Article  CAS  Google Scholar 

  • Litwiler TL, Cronin TW (2001) No evidence of accommodation in the eyes of the bottlenose dolphin, Tursiops truncatus. Mar Mamm Sci 17:508–525

    Article  Google Scholar 

  • Liu YJ, Wang ZQ, Song LP, Mu GG (2005) An anatomically accurate eye model with a shell-structure lens. Optik 116:241–246

    Article  Google Scholar 

  • Mallock A (1894) Insect sight and the defining power of compound eyes. Proc R Soc Lond B 55:85–90

    Google Scholar 

  • Martin GR (1998) Eye structure and amphibious foraging in albatrosses. Proc R Soc Lond B.265:665–671

    Article  Google Scholar 

  • Martin VJ (2004) Photoreceptors of cubozoan jellyfish. Hydrobiologia 530–531:135–144

    Google Scholar 

  • Martin G, Rojas LM, Ramírez Y, McNeil R (2004) The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwiss 91:26–29

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB, Stringer IA (1993) A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit. Vision Res 33:2645–2647

    Article  CAS  PubMed  Google Scholar 

  • Miller WH, Møller AR, Bernhard CG (1966) The corneal nipple array. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon Press, London, pp 21–33

    Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri JH, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbø CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro R, Santamaría J, Bescós J (1985) Accommodation-dependent model of the human eye with aspherics. J Opt Soc Am A 8:1273–1281

    Article  Google Scholar 

  • Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocrazy? Dev Genes Evol 2013:149–154

    Google Scholar 

  • Nilsson DE (2013) Eye evolution and its functional basis. Vis Neurosci 30:5–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Nilsson DE, Kelber A (2007) A functional analysis of compound eye evolution. Arthropod Struct Dev 36:373–385

    Google Scholar 

  • Nilsson DE, Land MF, Howard J (1984) Afocal apposition optics in butterfly eyes. Nature 312:561–563

    Article  Google Scholar 

  • Nilsson DE, Gislen L, Coates MM, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205

    Article  CAS  PubMed  Google Scholar 

  • Oakley TH (2003a) The eye as a replicating and diverging, modular developmental unit. Trends Ecol Evol 18:623–627

    Article  Google Scholar 

  • Oakley TH (2003b) On homology of arthropod compound eyes. Integr Comp Biol 43:522–530

    Article  PubMed  Google Scholar 

  • Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax-6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci USA 99:2020–2025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ott M (2006) Visual accommodation in vertebrates: mechanisms, physiological response, and stimuli. J Comp Physiol A 192:97–111

    Article  Google Scholar 

  • Peck RF, Echavarri-Erasun C, Eric A, Johnson EA, Wailap Victor Ngi WV, Kennedy SP, Hoodi L, DasSarma S, Krebs MP (2001) brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J Biol Chem 23:5739–5744

    Article  Google Scholar 

  • Piatigorsky J (2006) Seeing the light: the role of inherited developmental cascades in the origins of vertebrate lenses and their crystallins. Heredity 96:275–277

    Article  CAS  PubMed  Google Scholar 

  • Ramirez MD, Speiser DI, Pankey S, Oakley TH (2011) Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Vis Neurosci 28:265–279

    Article  PubMed  Google Scholar 

  • Ruch S, Beyer P, Ernst H, Al-Babili S (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC6803. Mol Microbiol 55:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Saidel WM, Fabiane RS (1998) Optomotor response of Anableps anableps depends on the field of view. Vision Res 38:2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Salvini-Plawen LV, Mayr E (1977) On the evolution of photoreceptors and eyes. J Evol Biol 10:207–263

    Google Scholar 

  • Sandeman DC (1978) Eye-scanning during walking in the crab Leptograpsus variegatus. J Comp Physiol 124:249–257

    Article  Google Scholar 

  • Schaeffel F, Mathis U (1991) Underwater vision in semi-aquatic European snakes. Naturwissenschaften 78:373–375

    Article  Google Scholar 

  • Seki T, Isono K, Ozaki K, Tsukahara Y, Shibata-Katsuta Y, Ito M, Irie T, Katagir M (1998) The metabolic pathway of visual pigment chromophore formation in Drosophila melanogaster. All-trans (3S)-3-hydroxyretinal is formed from all-trans retinal via (3R)-3-hydroxyretinal in the dark. Eur J Biochem 257:522–527

    Article  CAS  PubMed  Google Scholar 

  • Snyder AW (1969) Asymptotic expressions for eigenfunctions and eigenvalues of a dielelectric or optical waveguide. IEEE Trans Microw Theory Techn MIT-17:1130–1138

    Article  Google Scholar 

  • Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc Roy Soc B 273:661–667

    Article  CAS  Google Scholar 

  • Strod T, Arnd Z, Izhaki I, Katzir G (2004) Cormorants keep their power: visual resolution in a pursuit-diving bird under amphibious and turbid conditions. Curr Biol 14:R376–R377

    Article  CAS  PubMed  Google Scholar 

  • Swamynathan SK, Crawford MA, Robison WG, Kanungo J, Platigorsky J (2003) Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB J 17:1996–2005

    Article  CAS  PubMed  Google Scholar 

  • Terakita A (2005) The opsins. Genome Biol 6:213

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas AT (2005) Developmental palaeobiology of trilobite eyes and its evolutionary significance. Earth Sci Rev 71:77–93

    Article  Google Scholar 

  • Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Maria Ina Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci USA 108:8367–8372

    Article  PubMed Central  PubMed  Google Scholar 

  • van Hateren JH, Nilsson DE (1987) Butterfly optics exceed the theoretical limits of conventional apposition eyes. Biol Cybern 57:159–168

    Article  Google Scholar 

  • Varela FG, Wiitanen W (1970) The optics of the compound eye of the honeybee. J Gen Physiol 55:336–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogt K (1975) Zur Optik des Flusskrebsauges. Z Naturforsch 30:691–691

    CAS  Google Scholar 

  • Vogt K (1977) Ray path and reflection mechanisms in crayfish eyes. Z Naturforsch 32:466–468

    Google Scholar 

  • Vogt K (1980) Die Spiegeloptik des Flusskrebsauges. (The optical system of the crayfish eye.). J Comp Physiol A 135:1–19

    Article  Google Scholar 

  • von Salvini-Plawen L, Mayr E (1961). In: Hecht MK, Steere WC, Wallace B (eds), Evolutionary biology, vol. 10. Plenum Press, New York, pp 207–263

    Google Scholar 

  • Wagner HJ, Fröhlich E, Negishi K, Collin SP (1998) The eyes of deep-sea fish II. Functional morphology of the retina. Progr Retin Eye Res 17:637–685

    Article  CAS  Google Scholar 

  • Warrant E, Nilsson DE (eds) (2006) Invertebrate vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature 421:264–267

    Article  CAS  PubMed  Google Scholar 

  • Wolken JJ, Florida RG (1969) The eye structure and the optical system in the crustacean copepod Copilia. J Cell Biol 40:279–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu XY, Park TW, Winawer J, Wallman J (2005) In a matter of minutes, the eye can know which way to grow. Invest Ophthalmol Vis Sci 46:2238–2241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olof Björn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björn, L.O. (2015). The Diversity of Eye Optics. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_15

Download citation

Publish with us

Policies and ethics