Skip to main content
Book cover

Photobiology pp 119–137Cite as

Spectral Tuning in Biology II: Structural Color

  • Chapter
  • First Online:

Abstract

Structural colors occur in various kinds of animals, and even in plants, but are particularly prominent in insects and birds. They are formed by the interaction of light with materials with very specific (and usually complex) micro, nanoscale architecture. We begin with a discussion of iridescence, biological mirrors, and reflection in a single thin layer, and continue with reflection by multilayer stacks and two- and three-dimensional photonic crystals, and coloration due to random structures. We finish the chapter with an overview of the diversity of structural colors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldersley-Williams H (2004) Towards biomimetic architecture. Nat Mater 3:277–279

    Google Scholar 

  • Anderson TF, Richards AG Jr (1942) An electron microscope study of some structural colors of insects. J Appl Phys 13:748–758

    CAS  Google Scholar 

  • Andrews K, Reed SM, Masta SE (2007) Spiders fluoresce variably across many taxa. Biol Lett 3:265–267

    Google Scholar 

  • Aryal M, Ko DH, Tumbleston JR, Gadisa A, Samulski ET, Lopez R (2012) Large area nanofabrication of butterfly wing’s three dimensional ultrastructures. J Vac Sci Technol B 30:06182-1–06182-7

    Google Scholar 

  • Benyus JM (2002) Biomimicry: innovation inspired by nature. Harper Collins, New York

    Google Scholar 

  • Bernhard CG, Miller WH, Møller AR (1965) The insect corneal ripple array. A biological broad-band impedance transformer acts as an antireflection coating. Acta Physiol Scand 63(suppl 243):1–79

    Google Scholar 

  • Bernhard CG, Gemne G, Møller AR (1968) Modification of specular reflexion and light transmission by biological surface structure – to see, to be seen or not to be seen. Quart Rev Biophys 1:89–105

    CAS  Google Scholar 

  • Bernhard CG, Gemne G, Sällström J (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z Vergl Physiol 67:1–25

    Google Scholar 

  • Berthier S (2007) Iridescences: the physical colors of insects. Springer, Berlin

    Google Scholar 

  • Born M, Wolf E (1959) Principles of optics. Pergamon Press, London

    Google Scholar 

  • Caveney S (1971) Cuticle reflectivity and optical activity in scarab beetles: the rôle of uric acid. Proc R Soc Lond B 178:205–225

    CAS  PubMed  Google Scholar 

  • DeMartini DG, Krogstad DV, Morse D (2013) Membrane invaginations facilitate reversible water flux driving tunable iridescence in a dynamic biophotonic system. Proc Natl Acad Sci U S A 110:2552–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denton EJ, Land MF (1971) Mechanism of reflection in silvery layers of fish and cephalopods. Proc Roy Soc Lond A 178:43–61

    CAS  Google Scholar 

  • Dufresne ER, Noh H, Saranathan V, Mochrie SGJ, Cao H, Prum RO (2009) Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 5:1792–1795

    CAS  Google Scholar 

  • Durrer H (1962) Schillerfarben beim Pfau (Pavo cristatus L.). Verhand Naturf Ges Basel 73:204–224

    Google Scholar 

  • Durrer H (1977) Schillerfarben der Vogelfeder als Evolutionsproblem. Denkschr Schweiz Naturforsch Ges 91:1–127

    Google Scholar 

  • Dyck J (1971) Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana. Z Zellforsch 115:17–29

    CAS  PubMed  Google Scholar 

  • Fox DL (1976) Animal biochromes and structural colours. University California Press, Berkeley

    Google Scholar 

  • Frank F, Ruska H (1939) Übermikroskopische Untersuchung der Blaustruktur der Vogelfeder. Nature 27:229–230

    Google Scholar 

  • Gentil K (1942) Elektronenmikroskopische Untersuchung des Feinbauses schillernder Leisten von Morpho-Schuppen. Z Morph Ökol Tiere 38:344–355

    Google Scholar 

  • Ghiradella H (1974) Development of ultra-reflective butterfly scales: How to make an interference filter. J Morph 142:395–410

    Google Scholar 

  • Ghiradella H (1984a) Development of ultraviolet reflecting butterfly scales: how to make an interference filter. J Morph 142:395–410

    Google Scholar 

  • Ghiradella H (1984b) Structure of iridescent lepidopteran scales: variations on several themes. Ann Entomol Soc Am 77:637–645

    Google Scholar 

  • Ghiradella H (1985) Structure and development of iridescent lepidopteran scales: the Papilionidae as a showcase family. Ann Entomol Soc Am 78:252–264

    Google Scholar 

  • Ghiradella H (1989) Structure and development of iridescent butterfly scales: lattices and laminae. J Morph 202:69–88

    Google Scholar 

  • Ghiradella H (1991) Light and color on the wing: structural colors in butterflies and moths. Appl Opt 30:3492–3500

    CAS  PubMed  Google Scholar 

  • Ghiradella H (1994) Structure of butterfly scales: patterning in an insect cuticle. Micr Res Tech 27:429–438

    CAS  Google Scholar 

  • Ghiradella H (1998) Hairs, bristles and scales. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11A, Insecta. Wiley-Liss, New York, pp 257–287

    Google Scholar 

  • Ghiradella H, Radigan W (1976) Development of butterfly scales II. Struts, lattices and surface tension. J Morph 150:279–298

    Google Scholar 

  • Glover BJ, Whitney HM (2010) Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Ann Bot 105:505–511

    PubMed Central  PubMed  Google Scholar 

  • Gralak B, Tayeb G, Enoch S (2001) Morpho butterfly wings color modeled with lamellar grating theory. Opt Exp 9:567–578

    CAS  Google Scholar 

  • Hariyama T, Hironaka M, Horiguchi H, Stavenga DG (2005) The leaf beetle, the jewel beetle, and the damselfly: insects with a multilayered show case. In: Kinoshita S, Yoshioka S (eds) Structural colors in biological systems: principles and applications. Osaka University Press, Osaka, pp 153–176

    Google Scholar 

  • Harman J (2013) The Shark’s paintbrush. White Cloud Press, Ashland

    Google Scholar 

  • Herring (1994) Reflective systems in aquatic animals. Comp Biochem Physiol 109A:513–546

    CAS  Google Scholar 

  • Herring P (2002) The biology of the deep ocean. Oxford University Press, Oxford

    Google Scholar 

  • Hinton HE, Jarman GM (1972) Physiological color change in the Hercules beetle. Nature 238:160–161

    Google Scholar 

  • Hinton HE, Jarman GM (1973) Physiological color change in the elytra of the Hercules beetle. Dynastes hercules J Insect Physiol 19:533–549

    Google Scholar 

  • Hooke R (1665) Micrographia: or same physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. Replicated by Dover Publication, New York

    Google Scholar 

  • Huxley AF (1968) A theoretical treatment of the reflexion of light by multilayer structures. J Exp Biol 48:227–245

    Google Scholar 

  • Kambe M, Zhu D, Kinoshita S (2011) Origin of retroreflection from a wing of the Morpho butterfly. J Phys Soc Jpn 80:054801-1–054801-10

    Google Scholar 

  • Kinoshita S (2008) Structural colors in the realm of nature. World Scientific Publishing, Singapore

    Google Scholar 

  • Kinoshita S (2013) Nanobiophotonics – an introductory textbook. Pan Stanford, Singapore

    Google Scholar 

  • Kinoshita S, Yoshioka S (eds) (2005a) Structural colors in biological systems. Osaka University Press, Osaka

    Google Scholar 

  • Kinoshita S, Yoshioka S (2005b) Structural colors in nature. A role of regularity and irregularity in the structure. ChemPhysChem 6:1443–1459

    Google Scholar 

  • Kinoshita S, Yoshioka S, Kawagoe K (2002a) Mechanisms of structural color in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc Lond B269:1417–1422

    Google Scholar 

  • Kinoshita S, Yoshioka S, Fujii Y, Okamoto N (2002b) Photophysics of structural color in the Morpho butterflies. Forma 17:103–121

    Google Scholar 

  • Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401-1–076401-30

    Google Scholar 

  • Land MF (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J Exp Biol 45:433–447

    Google Scholar 

  • Land MF (1972) The physics and biology animal reflectors. Prog Biophys Mol Biol 24:77–106

    Google Scholar 

  • Land MF, Nilsson D-E (2008) Animal eyes, 2nd ed. Oxford University Press, Oxford

    Google Scholar 

  • Large MCJ, McKenzie DR, Parker AR, Steel BC, Ho K, Bosi SG, Nicorovici N, McPhedran RC (2001) The mechanism of light reflectance in silverfish. Proc R Soc Lond A 457:511–518

    Google Scholar 

  • Lee D (2007) Nature’s Palette: the science of plant color. University of Chicago Press, Chicago

    Google Scholar 

  • Lee RT, Smith GS (2009) Detailed electromagnetic simulation for the structural color of butterfly wings. Appl Opt 48:4177–4190

    PubMed  Google Scholar 

  • Lythgoe JN, Shand J (1982) Changes in spectral reflexions from the iridophores of the neon tetra. J Physiol 325:23–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason CW (1923a) Structural colors in feathers. I. J Phys Chem 27:201–251

    Google Scholar 

  • Mason CW (1923b) Structural colors in feathers. II. J Phys Chem 27:401–447

    CAS  Google Scholar 

  • Mason CW (1926) Structural colors in insects. I. J Phys Chem 30:383–395

    CAS  Google Scholar 

  • Mason CW (1927a) Structural colors in insects. II. J Phys Chem 31:321–354

    CAS  Google Scholar 

  • Mason CW (1927b) Structural colors in insects. III. J Phys Chem 31:1856–1872

    CAS  Google Scholar 

  • Michielsen K, Stavenga DG (2008) Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. J R Soc Interface 5:85–94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michielsen K, De Raedt H, Stavenga DG (2010) Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly. Callophyris rubi J R Soc Interface 7:765–771

    CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Meien, speziell kolloidaler Metallösungen. Annu Rev Plant Physiol Plant Mol Biol 330:377–445

    Google Scholar 

  • Morehouse NI, Vukusic P, Rutkowski R (2007) Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc Roy Soc Lond B 274:359–366

    CAS  Google Scholar 

  • Morris RB (1975) Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak. Proc R Soc Entomol A 48:149–154

    Google Scholar 

  • Nagaishi H, Oshima N (1992) Ultrastructure of the motile iridophores of the neon tetra. Zool Sci 9:65–75

    Google Scholar 

  • Neville AC (1993) Biology of fibrous composites. Cambridge University Press, Cambridge

    Google Scholar 

  • Newton I (1704) Opticks: or a treatise of the reflections, refractions, inflections & colours of light. Republicated by Dover Publication, New York

    Google Scholar 

  • Noh H, Liew SF, Saranathan V, Mochrie SGJ, Prum RO, Dufresne ER, Cao H (2010) How noniridescent colors are generated by quasi-ordered structures of bird feather. Adv Mater 22:2871–2880

    CAS  PubMed  Google Scholar 

  • Onslow H (1920) The iridescent colours of insects. II. Diffraction colours. Nature 106:181–183

    Google Scholar 

  • Onslow H (1923) On a periodic structure in many insect scales, and the cause of their iridescent colours. Phil Trans 211:1–74

    Google Scholar 

  • Parker AR (1998) The diversity and implications of animal structural colours. J Exp Biol 201:2343–2347

    CAS  PubMed  Google Scholar 

  • Parker AR (1999) Light-reflection strategies. Am Sci 87:248–255

    Google Scholar 

  • Parker AR (2000) 515 million years of structural color. J Opt A Pure Appl Opt 2:R15–R28

    Google Scholar 

  • Parker AR, McPhedran RC, McKenzie DR, Botten LC, Nicorovici N-AP (2001) Aphrodite’s iridescence. Nature 409:36–37

    CAS  PubMed  Google Scholar 

  • Parker AR, Welch VL, Driver D, Martini N (2003) An opal analogue discovered in a weevil. Nature 426:786–787

    CAS  PubMed  Google Scholar 

  • Pfaff G, Reynders P (1999) Angle-dependent optical effects from submicron structures of films and pigments. Chem Rev 99:1963–1981

    CAS  PubMed  Google Scholar 

  • Plattner L (2004) Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the backscattering of light in the visible spectrum. J R Soc Interface 1:49–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poladian L, Wichham S, Lee K, Large MCJ (2009) Iridescence from photonic crystals and its suppression in butterfly scales. J R Soc Interface 6:S233–S242

    PubMed Central  PubMed  Google Scholar 

  • Potyrailo RA, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer JR, Olson E (2007) Morpho butterfly wing scales demonstrate highly selective vapour response. Nat Photonics 1:123–128

    CAS  Google Scholar 

  • Prum RO (2006) Anatomy, physics and evolution of structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Harvard University Press, Cambridge, MA, pp 295–353

    Google Scholar 

  • Prum RO, Torres RH (2003) Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 206:2409–2429

    PubMed  Google Scholar 

  • Prum RO, Torres RH (2004) Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 207:2157–2172

    PubMed  Google Scholar 

  • Prum RO, Torres RH, Williamson S, Dyck J (1998) Coherent light scattering by blue feather barbs. Nature 396:28–29

    CAS  Google Scholar 

  • Prum RO, Torres RH, Williamson S, Dick J (1999a) Two-dimensional fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proc R Soc Lond B266:13–22

    Google Scholar 

  • Prum RO, Torres RH, Kovach F, Williamson S, Goodman SM (1999b) Coherent light scattering by nanostructured collagen arrays in the caruncles of the Malagasy asities (Eurylaimidae: Aves). J Exp Biol 202:3507–3522

    PubMed  Google Scholar 

  • Raman CV (1934) The origin of the colours in the plumage of birds. Proc Ind Acad Sci A1:567–573

    Google Scholar 

  • Rayleigh JWS (1871a) On the light from the sky, its polarization and colour. Phil Mag 41:107–120

    Google Scholar 

  • Rayleigh JWS (1871b) On the scattering of light by small particles. Phil Mag 41:447–454

    Google Scholar 

  • Rutkowski RL, Macedonia JM, Morehouse N, Taylor-Taft L (2005) Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc R Soc Lond B 272:2329–2335

    Google Scholar 

  • Saranathan V, Osuji CO, Mochrie SGJ, Noh H, Narayanan S, Sandy A, Dufresne ER, Prum RO (2010) Structure, function, and self-assembly of single network gyroid (14132) photonic crystals in butterfly wing scales. Proc Natl Acad Sci 107:11676–11681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt WJ (1943) Die Mosaikschuppen des Teinopalpus imperialis Hope, ein neues Muster schillernder Schmetterlingsschuppen. Z Morph Ökol Tiere 39:176–216

    Google Scholar 

  • Schmidt WJ, Ruska H (1962) Tyndallblau – Structur von Federn im Elektronenmikroskop. Z Zellforsch 56:693–708

    CAS  PubMed  Google Scholar 

  • Srinivasarao M (1999) Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem Rev 99:1935–1961

    CAS  PubMed  Google Scholar 

  • Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006a) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc Lond B 273:661–667

    CAS  Google Scholar 

  • Stavenga DG, Giraldo MA, Hoenders BJ (2006b) Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies. Opt Exp 14:4880–4890

    CAS  Google Scholar 

  • Vigneron JP, Pasteels JM, Windsor DM, Vértesy S, Rassart M, Seldrum T, Dumont J, Deparis O, Lousse V, Biró L, Ertz D, Welch V (2007) Switchable reflector in the Panamanian tortoise beetle, Charidotella egregia (Chrysomelidae: Cassinidae). Phys Rev E 76:031907-1–031907-10

    Google Scholar 

  • Vukusic P, Hooper I (2005) Directionally controlled fluorescence emission in butterflies. Science 310:1151

    CAS  PubMed  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    CAS  PubMed  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc Lond B 266:1403–1411

    Google Scholar 

  • Vukusic P, Hallam B, Noyes J (2007) Brilliant whiteness in ultrathin beetle scales. Science 315:348

    CAS  PubMed  Google Scholar 

  • Welch VL, Vigneron JP, Parker AR (2005) The cause of colouration in the ctenophore, Beroë cucumis. Curr Biol 15:R985–R986

    CAS  PubMed  Google Scholar 

  • Wilson T, Hastings JW (2013) Bioluminescence: living lights, lights for living. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Yoshida A (2002) Antireflection of butterfly and moth wings through microstructure. Forma 17:75–89

    Google Scholar 

  • Yoshida A, Motoyama M, Kosaku A, Miyamoto K (1996) Nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes Hylas. Zool Sci 13:525–526

    Google Scholar 

  • Yoshioka S, Kinoshita S (2002) Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 17:169–181

    Google Scholar 

  • Yoshioka S, Kinoshita S (2006) Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Proc R Soc Lond B273:129–134

    Google Scholar 

  • Yoshioka S, Kinoshita S (2011) Direct determination of the refractive index of natural multilayer systems. Phys Rev E 83:051917-1–051917-7

    Google Scholar 

  • Yoshioka S, Nakamura E, Kinoshita S (2007) Origin of two-color iridescence in rock dove’s feather. J Phys Soc Jpn 76:013801-1–013801-4

    Google Scholar 

  • Yoshioka S, Matsuhana B, Tanaka S, Inouye Y, Oshima N, Kinoshita S (2011) Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model. J R Soc Interface 8:56–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu D, Kinoshita S, Cai D, Cole JB (2009) Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density. Phys Rev E 80:051924-1–051924-12

    Google Scholar 

  • Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R (2003) Coloration strategies in peacock feathers. Proc Natl Acad Sci 100:12576–12578

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kinoshita, S., Ghiradella, H., Björn, L.O. (2015). Spectral Tuning in Biology II: Structural Color. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_10

Download citation

Publish with us

Policies and ethics