Skip to main content

The Nature of Light and Its Interaction with Matter

  • Chapter
  • First Online:
Photobiology
  • 3187 Accesses

Abstract

This chapter provides a physical background to the following ones. It describes the particle and wave properties of light and the diffraction, polarization, refraction, reflection, and absorption of light and statistics of photon emission and absorption. Planck’s law of heat radiation is described in various mathematical and graphical ways. One section is devoted to a simplified description of the propagation of light in absorbing and scattering media. The final sections are devoted to interactions between light and matter: spectra of and energy levels in atoms and molecules, the relation between absorption and emission spectra, the molecular geometry of absorption and emission, and the transfer of electronic excitation energy between molecules, including the Förster mechanism, triplet states, and the photobiologically important properties of the dioxygen molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso M, Finn EJ (1967) Fundamental university physics, vol 2, Fields and waves. Addison-Wesley, Reading

    Google Scholar 

  • Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G., Zeilinger, A (1999) Wave–particle duality of C60 molecules. Nature 401, 680–682

    Google Scholar 

  • Berweger S, Atkin JM, Olmon RL, Raschke MB (2012) Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 3:945–952

    Article  CAS  Google Scholar 

  • Björn LO, Björn GS (1986) Studies on energy dissipation in phycobilisomes using the Kennard-Stepanov relation between absorption and fluorescence emission spectra. Photochem Photobiol 44:535–542

    Article  Google Scholar 

  • Dionne JA, Harry A, Atwater HA (2012) Plasmonics: metal-worthy methods and materials in nanophotonics. Mater Res Bull 37:717–724

    Article  CAS  Google Scholar 

  • Fassioli F, Olaya-Castro A, Scholes GD (2012) Coherent energy transfer under incoherent light conditions. J Phys Chem Lett 3:3136–3142

    Article  CAS  Google Scholar 

  • Friedrich J, Scheer H, Zickendraht-Wendelstadt B, Haarer D (1981) High-resolution optical studies on C-phycocyanin via photochemical hole burning. J Am Chem Soc 103:1030–1035

    Article  CAS  Google Scholar 

  • Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816

    Article  CAS  PubMed  Google Scholar 

  • Haupt W (1977) Bewegungsphysiologie der Pflanzen. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Hecht E (1987) Optics, 2nd edn. Addison Wesley, Reading

    Google Scholar 

  • Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta and vision. J Gen Physiol 25:819–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hegemann P, Marwan W (1988) Single photons are sufficient to trigger movement responses in Chlamydomonas reinhardtii. Photochem Photobiol 48:90–106

    Google Scholar 

  • Juan ML, Righini M, Romain Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356

    Google Scholar 

  • Kassal I, Yuen-Zhou J, Rahimi-Keshari S (2013) Does coherence enhance transport in photosynthesis? J Phys Chem Lett 4:362–367

    Article  CAS  Google Scholar 

  • Keijzer M, Star WM, Storchi PRM (1988) Optical diffusion in layered media. Appl Optics 27:1820–1824

    Article  CAS  Google Scholar 

  • Kennard EH (1918) On the thermodynamics of fluorescence. Phys Rev 11:29–38

    Article  CAS  Google Scholar 

  • Knox RS (2003) Dipole and oscillator strengths of chromophores in solution. Photochem Photobiol 77:492–496

    Article  CAS  PubMed  Google Scholar 

  • Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Phys Rev 11:672–683

    Google Scholar 

  • Lakowicz (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sclafani M, Juffmann T, Knobloch C, Arndt M (2013) Quantum coherent propagation of complex molecules through the frustule of the alga Amphipleura pellucida. New J. Phys 15:083004. (http://iopscience.iop.org/1367-2630/15/8/083004)

  • Seyfried M, Fukshansky L (1983) Light gradients in plant tissue. Appl Optics 22:1402–1408

    Article  CAS  Google Scholar 

  • Star WM, Marijnissen JPA, van Gemert MJC (1988) Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory. Phys Med Biol 33:437–454

    Article  CAS  PubMed  Google Scholar 

  • Stepanov BI (1957) A universal relation between the absorption and luminescence spectra of complex molecules. Dokl Akad Nauk SSSR 112:830–842 (Engl. transl. Soviet Phys. Doklady, 2, 81–84)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olof Björn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björn, L.O. (2015). The Nature of Light and Its Interaction with Matter. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_1

Download citation

Publish with us

Policies and ethics