Advertisement

Intraoperative Doppler Ultrasound During Robotic Surgery

  • Ahmet Gudeloglu
  • Jamin V. Brahmbhatt
  • Annika Mulaney
  • Sijo Parekattil
Chapter

Abstract

The use of robotic assistance has evolved dramatically in minimally invasive surgery. One of the disadvantages of the robotic platform is the lack of tactile feedback. This increases the surgeon’s reliance on adjunctive tools that may provide visual and sensory guidance when manipulating anatomical structures such as arteries and veins. Intraoperative Doppler ultrasound is one such technology that provides the surgeon the ability to detect vessels in areas that may be difficult to visualize or for auditory confirmation in a complex dissection. This chapter focuses on currently available intraoperative Doppler ultrasound systems and their applications during robotic-assisted urological procedures.

Keywords

Robotic surgery robotic nephrectomy robotic prostatectomy robotic pyeloplasty robotic microsurgery Doppler ultrasound intraoperative Doppler ultrasound 

References

  1. 1.
    Rassweiler J, Rassweiler MC, Kenngott H, Frede T, Michel MS, Alken P, Clayman R. The past, present and future of minimally invasive therapy in urology: a review and speculative outlook. Minim Invasive Ther Allied Technol. 2013;22(4):200–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Clayman RV, Kavoussi LR, Soper NJ, Dierks SM, Merety KS, Darcy MD, Long SR, Roemer FD, Pingleton ED, Thomson PG. Laparoscopic nephrectomy. N Engl J Med. 1991;324(19):1370–1. [Case Reports Letter].PubMedGoogle Scholar
  3. 3.
    Abbou CC, Hoznek A, Salomon L, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D. Remote laparoscopic radical prostatectomy carried out with a robot. Report of a case. Prog Urol. 2000;10(4):520–3. [Case Reports].PubMedGoogle Scholar
  4. 4.
    Skarecky DW. Robotic-assisted radical prostatectomy after the first decade: surgical evolution or new paradigm. ISRN Urol. 2013;2013:157379.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Finkelstein J, Eckersberger E, Sadri H, Taneja SS, Lepor H, Djavan B. Open versus laparoscopic versus robot-assisted laparoscopic prostatectomy: the European and US experience. Rev Urol. 2010;12(1):35–43.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Bholat OS, Haluck RS, Murray WB, Gorman PJ, Krummel TM. Tactile feedback is present during minimally invasive surgery. J Am Coll Surg. 1999;189(4):349–55. [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  7. 7.
    De Wilde RL, Herrmann A. Robotic surgery – advance or gimmick? Best Pract Res Clin Obstet Gynaecol. 2013;27(3):457–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee JW, Yoon YE, Kim DK, Park SY, Moon HS, Lee TY. Renal artery injury during robot-assisted renal surgery. J Endourol. 2010;24(7):1101–4. [Case Reports].PubMedCrossRefGoogle Scholar
  9. 9.
    Ukimura O, Okihara K, Kamoi K, Naya Y, Ochiai A, Miki T. Intraoperative ultrasonography in an era of minimally invasive urology. Int J Urol. 2008;15(8):673–80. [Review].PubMedCrossRefGoogle Scholar
  10. 10.
    Gilbert BR, Russo P, Zirinsky K, Kazam E, Fair WR, Vaughan Jr ED. Intraoperative sonography: application in renal cell carcinoma. J Urol. 1988;139(3):582–4. [Case Reports].PubMedGoogle Scholar
  11. 11.
    Hangiandreou NJ. AAPM/RSNA physics tutorial for residents: topics in US B-mode US: basic concepts and new technology. Radiographics. 2003;23(4):1019–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Kolecki R, Schirmer B. Intraoperative and laparoscopic ultrasound. Surg Clin N Am. 1998;78(2):251–71. [Review].PubMedCrossRefGoogle Scholar
  13. 13.
    Yakoubi R, Autorino R, Laydner H, Guillotreau J, White MA, Hillyer S, Spana G, Khanna R, Isaac W, Haber GP, Stein RJ, Kaouk JH. Initial laboratory experience with a novel ultrasound probe for standard and single-port robotic kidney surgery: increasing console surgeon autonomy and minimizing instrument clashing. Int J Med Robot. 2012;8(2):201–5. [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  14. 14.
    Kaczmarek BF, Sukumar S, Petros F, Trinh QD, Mander N, Chen R, Menon M, Rogers CG. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: initial series and outcomes. Int J Urol. 2013;20(2):172–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Boote EJ. AAPM/RSNA physics tutorial for residents: topics in US Doppler US techniques: concepts of blood flow detection and flow dynamics. Radiographics. 2003;23(5):1315–27.PubMedCrossRefGoogle Scholar
  16. 16.
    Mues AC, Okhunov Z, Badani K, Gupta M, Landman J. Intraoperative evaluation of renal blood flow during laparoscopic partial nephrectomy with a novel Doppler system. J Endourol. 2010;24(12):1953–6. [Clinical Trial].PubMedCrossRefGoogle Scholar
  17. 17.
    Warren J, da Silva V, Caumartin Y, Luke PP. Robotic renal surgery: the future or a passing curiosity? Can Urol Assoc J. 2009;3(3):231–40.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Patil UD, Ragavan A, Nadaraj, Murthy K, Shankar R, Bastani B, Ballal SH. Helical CT angiography in evaluation of live kidney donors. Nephrol Dial Transplant. 2001;16(9):1900–4. [Comparative Study].PubMedCrossRefGoogle Scholar
  19. 19.
    Tombul ST, Aki FT, Gunay M, Inci K, Hazirolan T, Karcaaltincaba M, Erkan I, Bakkaloglu A, Yasavul U, Bakkaloglu M. Preoperative evaluation of hilar vessel anatomy with 3-D computerized tomography in living kidney donors. Transplant Proc. 2008;40(1):47–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hodgson DJ, Jan W, Rankin S, Koffman G, Khan MS. Magnetic resonance renal angiography and venography: an analysis of 111 consecutive scans before donor nephrectomy. BJU Int. 2006;97(3):584–6. [Evaluation Studies].PubMedCrossRefGoogle Scholar
  21. 21.
    Holden A, Smith A, Dukes P, Pilmore H, Yasutomi M. Assessment of 100 live potential renal donors for laparoscopic nephrectomy with multi-detector row helical CT. Radiology. 2005;237(3):973–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Hyams ES, Kanofsky JA, Stifelman MD. Laparoscopic Doppler technology: applications in laparoscopic pyeloplasty and radical and partial nephrectomy. Urology. 2008;71(5):952–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Tanagho YS, Kaouk JH, Allaf ME, Rogers CG, Stifelman MD, Kaczmarek BF, Hillyer SP, Mullins JK, Chiu Y, Bhayani SB. Perioperative complications of robot-assisted partial nephrectomy: analysis of 886 patients at 5 United States centers. Urology. 2013;81(3):573–9. [Multicenter Study].PubMedCrossRefGoogle Scholar
  24. 24.
    Thiel DD. Navigating the difficult robotic assisted pyeloplasty. ISRN Urol. 2012;2012:291235.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Mathew A, Devesa SS, Fraumeni Jr JF, Chow WH. Global increases in kidney cancer incidence, 1973–1992. Eur J Cancer Prev. 2002;11(2):171–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Kane CJ, Mallin K, Ritchey J, Cooperberg MR, Carroll PR. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer. 2008;113(1):78–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Gill IS, Kavoussi LR, Lane BR, Blute ML, Babineau D, Colombo Jr JR, Frank I, Permpongkosol S, Weight CJ, Kaouk JH, Kattan MW, Novick AC. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol. 2007;178(1):41–6. [Comparative Study Multicenter Study].PubMedCrossRefGoogle Scholar
  28. 28.
    Patel HD, Mullins JK, Pierorazio PM, Jayram G, Cohen JE, Matlaga BR, Allaf ME. Trends in renal surgery: robotic technology is associated with increased use of partial nephrectomy. J Urol. 2013;189(4):1229–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Patel MN, Bhandari M, Menon M, Rogers CG. Robotic-assisted partial nephrectomy. BJU Int. 2009;103(9):1296–311.PubMedCrossRefGoogle Scholar
  30. 30.
    Sun MR, Wagner AA, San Francisco IF, Brook A, Kavoussi L, Russo P, Steele G, Viterbo R, Pedrosa I. Need for intraoperative ultrasound and surgical recommendation for partial nephrectomy: correlation with tumor imaging features and urologist practice patterns. Ultrasound Q. 2012;28(1):21–7. [Comparative Study].PubMedCrossRefGoogle Scholar
  31. 31.
    Kaczmarek BF, Sukumar S, Kumar RK, Desa N, Jost K, Diaz M, Menon M, Rogers CG. Comparison of robotic and laparoscopic ultrasound probes for robotic partial nephrectomy. J Endourol. 2013;27(9):1137–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Perlmutter MA, Hyams ES, Stifelman MD. Laparoscopic Doppler technology in laparoscopic renal surgery. JSLS. 2009;13(3):406–10.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Sethi AS, Regan SM, Sundaram CP. The use of a Doppler ultrasound probe during vascular dissection in laparoscopic renal surgery. J Endourol. 2009;23(9):1377–82. [Clinical Trial].PubMedCrossRefGoogle Scholar
  34. 34.
    Hyams ES, Perlmutter M, Stifelman MD. A prospective evaluation of the utility of laparoscopic Doppler technology during minimally invasive partial nephrectomy. Urology. 2011;77(3):617–20. [Evaluation Studies].PubMedCrossRefGoogle Scholar
  35. 35.
    Abaza R. Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol. 2011;59(4):652–6. [Case Reports].PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JY, Mucksavage P. Robotic radical nephrectomy with vena caval tumor thrombectomy: experience of novice robotic surgeons. Korean J Urol. 2012;53(12):879–82.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Gorodner V, Horgan S, Galvani C, Manzelli A, Oberholzer J, Sankary H, Testa G, Benedetti E. Routine left robotic-assisted laparoscopic donor nephrectomy is safe and effective regardless of the presence of vascular anomalies. Transpl Int. 2006;19(8):636–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Horgan S, Galvani C, Gorodner MV, Jacobsen GR, Moser F, Manzelli A, Oberholzer J, Fisichella MP, Bogetti D, Testa G, Sankary HN, Benedetti E. Effect of robotic assistance on the “learning curve” for laparoscopic hand-assisted donor nephrectomy. Surg Endosc. 2007;21(9):1512–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Hubert J, Renoult E, Mourey E, Frimat L, Cormier L, Kessler M. Complete robotic-assistance during laparoscopic living donor nephrectomies: an evaluation of 38 procedures at a single site. Int J Urol. 2007;14(11):986–9.PubMedCrossRefGoogle Scholar
  40. 40.
    van der Meijden OA, Schijven MP. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc. 2009;23(6):1180–90. [Review].PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Peters CA. Pediatric robot-assisted pyeloplasty. J Endourol. 2011;25(2):179–85. [Review].PubMedCrossRefGoogle Scholar
  42. 42.
    Autorino R, Eden C, El-Ghoneimi A, Guazzoni G, Buffi N, Peters CA, Stein RJ, Gettman M. Robot-assisted and laparoscopic repair of ureteropelvic junction obstruction: a systematic review and meta-analysis. Eur Urol. 2014;65(2):430–52. pii: S0302-2838(13)00668-4.PubMedCrossRefGoogle Scholar
  43. 43.
    Quillin SP, Brink JA, Heiken JP, Siegel CL, McClennan BL, Clayman RV. Helical (spiral) CT angiography for identification of crossing vessels at the ureteropelvic junction. AJR Am J Roentgenol. 1996;166(5):1125–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Braun P, Guilabert JP, Kazmi F. Multidetector computed tomography arteriography in the preoperative assessment of patients with ureteropelvic junction obstruction. Eur J Radiol. 2007;61(1):170–5. [Clinical Trial].PubMedCrossRefGoogle Scholar
  45. 45.
    Braga LH, Pace K, DeMaria J, Lorenzo AJ. Systematic review and meta-analysis of robotic-assisted versus conventional laparoscopic pyeloplasty for patients with ureteropelvic junction obstruction: effect on operative time, length of hospital stay, postoperative complications, and success rate. Eur Urol. 2009;56(5):848–57. [Meta-Analysis Review].PubMedCrossRefGoogle Scholar
  46. 46.
    Bird VG, Leveillee RJ, Eldefrawy A, Bracho J, Aziz MS. Comparison of robot-assisted versus conventional laparoscopic transperitoneal pyeloplasty for patients with ureteropelvic junction obstruction: a single-center study. Urology. 2011;77(3):730–4. [Comparative Study].PubMedCrossRefGoogle Scholar
  47. 47.
    Etafy M, Pick D, Said S, Hsueh T, Kerbl D, Mucksavage P, Louie M, McDougall E, Clayman R. Robotic pyeloplasty: the University of California-Irvine experience. J Urol. 2011;185(6):2196–200.PubMedCrossRefGoogle Scholar
  48. 48.
    Tobis S, Venigalla S, Balakumaran K, Scosyrev E, Lloyd GL, Golijanin DJ, Joseph JV, Rashid H, Wu G. Analysis of a large single-center experience with robot-assisted pyeloplasty. Int J Urol. 2013;20(2):230–4. [Comparative Study Evaluation Studies].PubMedCrossRefGoogle Scholar
  49. 49.
    Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, Stephenson RA, Scardino PT, Sandhu JS. Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urol. 2012;187(6):2087–92. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, Guazzoni G, Menon M, Mottrie A, Patel VR, Van der Poel H, Rosen RC, Tewari AK, Wilson TG, Zattoni F, Montorsi F. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):418–30. [Meta-Analysis Review].PubMedCrossRefGoogle Scholar
  51. 51.
    Han M, Kim C, Mozer P, Schafer F, Badaan S, Vigaru B, Tseng K, Petrisor D, Trock B, Stoianovici D. Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology. 2011;77(2):502–6. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Long JA, Lee BH, Guillotreau J, Autorino R, Laydner H, Yakoubi R, Rizkala E, Stein RJ, Kaouk JH, Haber GP. Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology. 2012;80(3):608–13. [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  53. 53.
    Badani KK, Shapiro EY, Berg WT, Kaufman S, Bergman A, Wambi C, Roychoudhury A, Patel T. A pilot study of laparoscopic Doppler ultrasound probe to map arterial vascular flow within the neurovascular bundle during robot-assisted radical prostatectomy. Prostate Cancer. 2013;2013:810715.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kuang W, Shin PR, Matin S, Thomas Jr AJ. Initial evaluation of robotic technology for microsurgical vasovasostomy. J Urol. 2004;171(1):300–3. [Comparative Study In Vitro].PubMedCrossRefGoogle Scholar
  55. 55.
    Schiff J, Li PS, Goldstein M. Robotic microsurgical vasovasostomy and vasoepididymostomy: a prospective randomized study in a rat model. J Urol. 2004;171(4):1720–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Fleming C. Robot-assisted vasovasostomy. Urol Clin N Am. 2004;31(4):769–72. [Review].CrossRefGoogle Scholar
  57. 57.
    Parekattil SJ, Gudeloglu A. Robotic assisted andrological surgery. Asian J Androl. 2013;15(1):67–74.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Greenberg SH. Doppler ultrasound for localization of testicular artery during varicocelectomy. Urology. 1981;17(5):480.PubMedCrossRefGoogle Scholar
  59. 59.
    Cocuzza M, Pagani R, Coelho R, Srougi M, Hallak J. The systematic use of intraoperative vascular Doppler ultrasound during microsurgical subinguinal varicocelectomy improves precise identification and preservation of testicular blood supply. Fertil Steril. 2010;93(7):2396–9. [Clinical Trial].PubMedCrossRefGoogle Scholar
  60. 60.
    Chan PT, Wright EJ, Goldstein M. Incidence and postoperative outcomes of accidental ligation of the testicular artery during microsurgical varicocelectomy. J Urol. 2005;173(2):482–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of UrologyThe PUR Clinic, South Lake Hospital in Partnership with Orlando HealthClermontUSA

Personalised recommendations