Augmented Reality for Percutaneous Renal Interventions

  • Jens RassweilerEmail author
  • Marie-Claire Rassweiler
  • Michael Müller
  • Estevao Lima
  • Bogdan Petrut
  • Johannes Huber
  • Jan Klein
  • Manuel Ritter
  • Ali S. Gözen
  • Phillipe Pereira
  • Axel Häcker
  • Hans-Peter Meinzer
  • Ingmar Wegner
  • Dogu Teber


Optimal access to the renal collecting system or renal parenchyma guarantees a successful operation. The use of augmented reality to navigate the surgeon during endoscopic and percutaneous procedures is increasing. Marker-based iPad-assisted puncture of the renal collecting system shows more benefit for trainees with reduction of radiation exposure. 3D laser-assisted puncture of the renal collecting system using Uro Dyna-CT realised in an ex vivo model enables minimal radiation time. Electromagnetic tracking for puncture of the renal collecting system using a sensor at the tip of the ureteral catheter worked in an in vivo model of a porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces puncture error. Intraoperative navigation is helpful during percutaneous puncture of the collecting system and biopsy of renal tumour using various tracking techniques. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.


virtual reality for renal interventions marker-based navigation for renal interventions endoscopic tracking for renal interventions electromagnetic tracking optical tracking for renal interventions attitude tracking for renal interventions 3D-computer tomography for renal interventions 


  1. 1.
    Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906.PubMedCrossRefGoogle Scholar
  2. 2.
    Alken P, Hutschereiter G, Günther R, Marberger M. Percutaneous stone manipulation. J Urol. 1981;125:463–6.PubMedGoogle Scholar
  3. 3.
    Rassweiler J, Gumpinger R, Miller K, Hölzermann F, Eisenberger F. Multimodal treatment (Extracorporeal shock wave lithotripsy and endourology) of complicated renal stone disease. Eur Urol. 1986;12:294–304.PubMedGoogle Scholar
  4. 4.
    Rassweiler JJ, Renner C, Eisenberger F. Management of staghorn calculi analysis after 250 cases. Braz J Urol. 2000;26:463–78.Google Scholar
  5. 5.
    Desai M. Ultrasonography-guided punctures – with and without puncture guide. J Endourol. 2009;23:1641–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Frede T, Hatzinger M, Rassweiler J. Ultrasound in endourology. J Endourol. 2001;15:3–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Eisenberger F, Gumpinger R, Miller K, Horbaschek H, Sklebitz H. Stereoroentgenology in endourology. Urologe A. 1985;24:342–5.PubMedGoogle Scholar
  8. 8.
    Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol. 1982;127:417–20.PubMedGoogle Scholar
  9. 9.
    Fuchs G, Miller K, Rassweiler J, Eisenberger F. Extracorporeal shock wave lithotripsy: one-year experience with the Dornier lithotripter. Eur Urol. 1985;11:145–9.PubMedGoogle Scholar
  10. 10.
    Rassweiler J, Westhauser A, Bub P, Eisenberger F. Second-generation lithotripters: a comparative study. J Endourol. 1988;2:193–203.CrossRefGoogle Scholar
  11. 11.
    Rassweiler J, Köhrmann KU, Alken P. ESWL, including imaging. Curr Opin Urol. 1992;2:291–9.CrossRefGoogle Scholar
  12. 12.
    Rassweiler J, Henkel TO, Köhrmann KU, Potempa D, Jünemann KP, Alken P. Lithotripter technology: present and future. J Endourol. 1992;6:1–13.CrossRefGoogle Scholar
  13. 13.
    Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Cleveland RO, Bailey MR, Chaussy C. Shock wave technology and application: an update. Eur Urol. 2011;59:784–96.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lazarus J, Williams J. The locator: novel percutaneous nephrolithotomy apparatus to aid collecting system puncture – a preliminary report. J Endourol. 2011;25:747–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Su LM, Stoianovici D, Jarrett TW, Patriciu A, Roberts WW, Cadeddu JA, Ramakumar S, Solomon SB, Kavoussi LR. Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol. 2002;16:471–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Pollok R, Mozer P, Guzzo TJ, Marx J, Matlaga B, Petrisor D, Vigaru B, Badaan S, Stoianovici D, Allaf ME. Prospects in percutaneous ablative targeting: comparison of a computer-assisted navigation system and the AcuBot robotic system. J Endourol. 2010;24:1269–72.CrossRefGoogle Scholar
  17. 17.
    Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Surg. 2007;16:196–204.Google Scholar
  18. 18.
    Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access. J Endourol. 2009;23:1633–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Rodrigues PL, Rodrigues NF, Fonseca J, Lima E, Vilaca JL. Kidney targeting and puncturing during percutaneous nephrolithotomy: recent advances and future perspectives. J Endourol. 2013;27:826–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Baumhauer M, Feuerstein M, Meinzer HP, Rassweiler J. Navigation in endoscopic soft tissue surgery – perspectives and limitations. J Endourol. 2008;22:751–66.PubMedCrossRefGoogle Scholar
  21. 21.
    Teber D, Baumhauer M, Guven EO, Rassweiler J. Robotics and imaging in urological surgery. Curr Opin Urol. 2009;19:108–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Huber J, Wegner I, Meinzer HP, Hallscheidt P, Hadaschick B, Pahernik S, Hohenfellner M. Navigated renal access using electromagnetic tracking: an initial experience. Surg Endosc. 2011;25:1307–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Wegner I, Teber D, Hadaschick B, Pahernik S, Hohenfellner M, Meinzer H-P, Huber J. Pitfalls of electromagnetic tracking in clinical routine using multiple or adjacent sensors. Int J Med Robot Comput Assist Surg. 2013;9(3):268–73.CrossRefGoogle Scholar
  24. 24.
    Rassweiler JJ, Müller M, Fangerau M, Klein J, Goezen AS, Pereira P, Meinzer HP, Teber D. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol. 2011;61:628–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Müller M, Rassweiler M-C, Klein J, Seitel A, Gondam M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer H-P, Maier-Hein L. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg. 2013;8(4):663–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodrigues PL, Vilaça JL, Oliveira C, Cicione A, Rassweiler J, Fonseca J, Rodrigues NF, Correia-Pinto J, Lima E. Collecting system percutaneous access using real-time tracking sensors: first pig model in vivo experience. J Urol. 2013;190(5):1932–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Kroeze SG, Huisman M, Verkoojen HM, van Diest PJ, Ruud Bosch JL, van den Bosch MA. Real time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Cardiovasc Intervent Radiol. 2012;35(3):680–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Ritter M, Rassweiler MC, Häcker A, Michel MS. Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol. 2013;31(5):1147–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Rassweiler MC, Ritter M, Michel MS, Häcker A. Influence of endourological devices on 3D reconstruction image quality using Uro-Dyna-CT. World J Urol. 2013;31(5):1291–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Mozer P, Conort P, Leroy A, Baumann M, Payan Y, Troccaz J, Chartier-Kastler E, Richard F. Aid to percutaneous renal access by virtual projection of the ultrasound puncture tract onto fluoroscopic images. J Endourol. 2007;21:460–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Petrut B, Hogea M, Schitcu V. Attitude tracking device for improving precision of ultrasound-guided percutaneous procedures. J. Endourol. 2012;26(Suppl):Abstract No. VP-04-08.Google Scholar
  32. 32.
    Meyer BC, Peter O, Nagel M, Hoheisel M, Frericks BB, Wolf K-J, Wacker FK. Electromagnetic field-based navigation for percutaneous procedures on C-arm CT: experimental evaluation and clinical application. Eur Radiol. 2008;18:2855–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Braak SJ, van Strijen MJL, van Leersum M, van Es HW, van Heesewijk JPM. Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. AJR Am J Roentgenol. 2010;194:W445–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Sommer CM, Lemm G, Hohenstein E, Stampfl U, Bellemann N, Teber D, Rassweiler J, Kauczor HU, Radeleff BA, Pereira PL. Bipolar versus multipolar radiofrequency (RF) ablation fort the treatment of renal cell carcinoma: differences in technical and clinical parameters. Int J Hyperthermia. 2013;29:21–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Teber D, Guven S, Simpfendörfer T, Baumhauer M, Guven EO, Yencilek F, Gözen AS, Rassweiler J. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56:332–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Simpfendörfer T, Baumhauer M, Müller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D. Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol. 2011;2011(25):1841–5.CrossRefGoogle Scholar
  37. 37.
    Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, Seitz C. EAU-guidelines on urolithiasis 2013. In: Presented at EAU-congress, Milan, Mar 2013.Google Scholar
  38. 38.
    Parekattil S, Yeung LL, Su LM. Intraoperative tissue characterization and imaging. Urol Clin North Am. 2009;36:213–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Su L-M, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 2009;73:896–900.PubMedCrossRefGoogle Scholar
  40. 40.
    Ukimura O, Gill IS. Image-fusion, augmented reality and predictive surgical navigation. Urol Clin North Am. 2009;36:115–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Kindratenko VV. A survey of electromagnetic position tracker calibration techniques. Virtual Reality. 2000;5:169–82.CrossRefGoogle Scholar
  42. 42.
    Chmarra MK, Gimbergen CA, Dankelman J. Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol. 2007;16:320–40.CrossRefGoogle Scholar
  43. 43.
    Teber D, Simpfendörfer T, Guven S, Baumhauer M, Gözen AS, Rassweiler J. In-vitro evaluation of a soft tissue navigation system for laparoscopic prostatectomy. J Endourol. 2010;24:1487–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Nozaki T, Fujiuchi Y, Komiya A, Fuse H. Efficacy of DynaCT for surgical navigation during complex laparoscopic surgery: an initial experience. Surg Endosc. 2013;27:903–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Wynberg JB, Borin JF, Vicena JZ, Hannosh V, Salmon SA. Flexible ureteroscopy directed retrograde nephrostomy for percutaneous nephrolithotomy: description of a technique. J Endourol. 2012;26:1268–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Kawahara T, Ito H, Terao H, Yoshida M, Ogawa T, Uemura H, Kubota Y, Matsuzaki J. Ureteroscopy assisted retrograde nephrostomy: a new technique for percutaneous nephrolithotomy (PCNL). BJU Int. 2011;110:588–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Young JL, Khanifar E, Narula N, Ortiz-Vanderdys CG, Kolla SB, Pick DL, Sountoulides PG, Kaufmann OG, Osann KE, Huynh VB, Kaplan AG, Andrade LA, Louie MK, McDougall EM, Clayman RV. Optimal freeze cycle length for renal cryotherapy. J Urol. 2011;186:238–88.CrossRefGoogle Scholar
  48. 48.
    Carter TJ, Sermesant M, Cash DM, Barratt DC, Tanner C, Hawkes DJ. Application of soft tissue modelling to image-guided surgery. Med Eng Phys. 2005;27:893–909.PubMedCrossRefGoogle Scholar
  49. 49.
    Rassweiler J, Baumhauer M, Weickert U, Meinzer HP, Teber D, Su LM, Patel VR. The role of imaging and navigation for natural orifice translumenal endoscopic surgery. J Endourol. 2009;23:793–802.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim C, Chang D, Petrisor D, Chirikjian G, Han M, Stoianovici D. Ultrasound probe and needle guide calibration for robotic ultrasound scanning and needle targeting. IEEE Trans Biomed Eng. 2013;60:1728–34.PubMedCrossRefGoogle Scholar
  51. 51.
    De la Rosette JJ, Laguna MP, Rassweiler JJ, Conort P. Training in percutaneous nephrolithotomy – a critical review. Eur Urol. 2008;54:994–1003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jens Rassweiler
    • 1
    Email author
  • Marie-Claire Rassweiler
    • 2
  • Michael Müller
    • 3
  • Estevao Lima
    • 4
  • Bogdan Petrut
    • 5
  • Johannes Huber
    • 6
  • Jan Klein
    • 7
  • Manuel Ritter
    • 2
  • Ali S. Gözen
    • 7
  • Phillipe Pereira
    • 8
  • Axel Häcker
    • 2
  • Hans-Peter Meinzer
    • 3
  • Ingmar Wegner
    • 3
  • Dogu Teber
    • 9
  1. 1.Department of UrologySLK Kliniken HeilbronnHeidelbergGermany
  2. 2.Department of Urology, Medical School MannheimUniversity of HeidelbergHeidelbergGermany
  3. 3.Division of Medical and Biological InformaticsGerman Cancer Research CenterHeidelbergGermany
  4. 4.Department of Urology, Medical School BragaUniversity of BragaBragaPortugal
  5. 5.Department of Urology and Oncology, Medical School ClujUniversity of ClujCluj-NapocaRomania
  6. 6.Department of Urology, Medical SchoolTechnical University of DresdenDresdenGermany
  7. 7.Department of Urology, SLK Kliniken HeilbronnUniversity of HeidelbergHeidelbergGermany
  8. 8.Department of Radiology, SLK Kliniken HeilbronnUniversity of HeidelbergHeidelbergGermany
  9. 9.Department of Urology, Medical School HeidelbergUniversity of HeidelbergHeidelbergGermany

Personalised recommendations