Skip to main content

Partnerships, Future, and Emerging Technologies

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

  • 2177 Accesses

Abstract

This chapter will cover the current state and possible futures of the biofuels industry. Technology options for the production of cellulosic ethanol will be explained with comparative economics given for representative biochemical and thermochemical cellulosic ethanol conversion processes. This will be followed by a description of the current state of the biofuels industry with possible future directions outlined and what needs to happen both from a technical and business perspective to provide the best chances of success. Finally, advanced biofuel (hydrocarbon fuels) conversion options will be discussed with preliminary economics provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieber M, Toha JC. A general view of ethanol and methane production from cellulosic residues. J Ferent Technol. 1982;60(3):247–52.

    CAS  Google Scholar 

  2. Sk T. Process-development for ethanol-production based on enzymatic hydrolysis of cellulosic biomass. Process Biochem. 1982;17(3):36–45.

    Google Scholar 

  3. Cysewski GR, Wilke CR. Utilization of cellulosic materials through enzymatic hydrolysis. 1. Fermentation of hydrolysate to ethanol and single-cell protein. Biotechnol Bioeng. 1976;18(9):1297–313.

    Article  CAS  PubMed  Google Scholar 

  4. Gomiero T, Tiziano P, Maurizo G, Pimentel D. Biofuels: efficiency, ethics, and limits to human appropriation of ecosystem services. J Agric Environ Ethics. 2010;23(5):403–34.

    Article  Google Scholar 

  5. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science. 2008;319:1238–40.

    Article  CAS  PubMed  Google Scholar 

  6. Carter CA, Miller HI. Corn for food, not fuel. The New York Times: Opinion Pages, 30 July 2012.

    Google Scholar 

  7. Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, et al. Corrigendum: lifecycle greenhouse has implication of US national scenarios for cellulosic ethanol production. Environ Res Lett. 2012;7:014011.

    Article  Google Scholar 

  8. Hsu DD, Inman D, Heath GA, Wolfrum EJ, Mann MK, Aden A. Life cycle environmental impacts of selected U.S. ethanol production and use pathways in 2022. Environ Sci Technology. 2010;44:5289–97.

    Article  CAS  Google Scholar 

  9. Schmer MR, Vogel KP, Mitchell RB, Perrin K. Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA. 2007;105(2):464–69.

    Article  Google Scholar 

  10. Wang MQ, Han J, Haq Z, Tyner WE, Wu M, Elgowainy A. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy. 2011;35(5):1885–96.

    Article  CAS  Google Scholar 

  11. Himmel M, Ding SY, Johnson DK, Adney WS, Nimlos MR, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–7.

    Article  CAS  PubMed  Google Scholar 

  12. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol. 2010;101(23):8915–22.

    Article  CAS  PubMed  Google Scholar 

  13. Liu ZS, Wu XL, Kida K, Tang YQ. Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation. Bioresour Technol. 2012;119:224–33.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Stevens MA, Zhu Y, Holmes J, Maxley G, Xu H. Reducing acid in dilute acid pretreatment and the impact on enzymatic saccharification. J Ind Microbiol Biotechnol. 2012;39(5):691–700.

    Article  CAS  PubMed  Google Scholar 

  15. Wright J. Fuel ethanol technology evaluation. Biofuels and municipal waste technology research program summary FY 1986 National Technical Information Service report DE87001140. Solar Energy Research Institute DOE/CH/1093-6.

    Google Scholar 

  16. Sheehan J, Riley C. Annual bioethanol outlook: FY 2001. National Renewable Energy Laboratory (NREL). Sponsored by Office of Fuels Development U.S. Department of Energy.

    Google Scholar 

  17. Humbird D. Biochemical Platform State of Technology Update. National Renewable Energy Laboratory (NREL) September 2011. Milestone: A.ML.12; 2011.

    Google Scholar 

  18. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.

    Article  CAS  PubMed  Google Scholar 

  19. Rana D, Ran V, Ahring B. Producing high sugar concentrations form loblolly pine using wet explosion pretreatment. Bioresour Technol. 2012;121:61–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel. 2010;89(1):S20–8.

    Article  CAS  Google Scholar 

  21. Stephan JD, Mabee WE, Saddler JN. Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin-Biofpr. 2012;6(2):159–76.

    Article  Google Scholar 

  22. Huffer S, Roche CM, Blanch HW, Clark DS. Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol. 2012;30(10):538–45.

    Article  CAS  PubMed  Google Scholar 

  23. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. 2011. NREL/TP-5100-47764.

    Google Scholar 

  24. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci. 2012;38(4):522–50.

    Article  CAS  Google Scholar 

  25. Knauf M, Moniruzzaman M. Lignocellulosic biomass processing: a perspective. Int Sugar J. 2004;106(1263):147–50.

    CAS  Google Scholar 

  26. Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by dehydration products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;68(1):10–26.

    Article  Google Scholar 

  27. Pienkos PT, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose. 2009;16(4):743–62.

    Article  CAS  Google Scholar 

  28. Mascoma. December 14, 2011 Press Release – Mascoma awarded $80 million from the US DOE for construction of commercial-scale hardwood cellulosic ethanol facility in Kinross. Michigan.

    Google Scholar 

  29. Chu J. Cellulosic ethanol on the cheap. MIT Technology Review-Business News. 12 May 2009

    Google Scholar 

  30. Tao L, Aden A. The economics of current and future biofuels. In Vitro Cell Dev Biol-Plant. 2009;45(1):199–217.

    Article  Google Scholar 

  31. Carriquiry MA, Du X, Timilsina GR. Second generation biofuels: economics and policies. Energy Policy. 2011;39(7):4222–34.

    Article  Google Scholar 

  32. Henstra AM, Sipma J, Rinzema A, Stams AJM. Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol. 2007;18(3):200–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar A, Jones DD, Hanna MA. Thermochemical biomass gasification: a review of the current status of the technology. Energies. 2009;2(3):556–81.

    Article  CAS  Google Scholar 

  34. Phillips S, Aden A, Jechura J, Dayton D, Eggeman T. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. 2007; NREL/TP-510-41168.

    Google Scholar 

  35. Dutta A, Phillips SD. Thermochemical ethanol via direct gasification and mixed alcohol synthesis of lignocellulosic biomass. 2009; NREL/TP-510-45913.

    Google Scholar 

  36. Dutta A, Bain RL, Biddy MJ. Techno-economics of the production of mixed alcohols from lignocellulosic biomass via high-temperature gasification. Environ Process Sustain Energy. 2010;29(2):163–74.

    Article  CAS  Google Scholar 

  37. Carpenter DL, Bain RL, Davis RE, Dutta A, Feik CJ, Gaston KR, et al. Pilot-scale gasification of corn stover, switchgrass, wheat straw, and wood: 1. Parametric study and comparison with literature. Ind Eng Chem Res. 2010;49(4):1859–71.

    Article  CAS  Google Scholar 

  38. Noichi H, Uddin A, Sasaoka E. Steam reforming of naphthalene as model biomass tar over iron-aluminum and iron-zirconium oxide catalyst catalysts. Fuel Process Technol. 2010;91(11):1609–16.

    Article  CAS  Google Scholar 

  39. Magrini-Bair KA, Jablonski WS, Parent YO, Yung MM. Bench- and pilot-scale studies of reaction and regeneration of Ni-Mg-K/AL2O3 for catalytic conditioning of biomass-derived syngas. Top Catal. 2012;55(3–4):209–17.

    Article  CAS  Google Scholar 

  40. Subramani V, Gangwal SK. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels. 2008;22(2):814–39.

    Article  CAS  Google Scholar 

  41. Spivey JJ, Egbebi A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev. 2007;36(9):1514–28.

    Article  CAS  PubMed  Google Scholar 

  42. Baldwin RM, Magrini-Bair KA, Nimlos MR, Pepiot P, Donohoe BS, Hensley JE, et al. Current research on thermochemical conversion of biomass at the National Renewable Energy Laboratory. Appl Catal Environ. 2012;115–116:320–9.

    Article  Google Scholar 

  43. Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, et al. Techno-economics for conversion of lignocellulosic biomass to ethanol by direct gasification and mixed alcohol synthesis. Environ Prog Sust Energy. 2012;31(2):182–90.

    Article  CAS  Google Scholar 

  44. Foust TD, Aden A, Dutta A, Phillips S. An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose. 2009;16(4):547–65.

    Article  CAS  Google Scholar 

  45. US Energy Policy Act (EPActO of 2005 as amended by the Energy Independence and Security Act (EISA) of 2007. www.epa.gov/otaq/fuels/renewablefuels/index.htm. Last accessed 21 Feb 2013.

  46. Biofuels Digest. Industrial database, category: biofuels digest index. 2013. http://www.biofuelsdigest.com/bdigest/category/biofuels-digest-20-index-bdi. Last accessed 25 Feb 2013.

  47. Walls WD, Russo F, Kendrix M. Biofuels policy and the US market for motor fuels: empirical analysis of ethanol splashing. Energy Policy. 2011;39(7):3999–4006.

    Article  Google Scholar 

  48. U.S. EPA E15 partial waiver January 21, 2011. www.epa.gov/otaq/regs/fuels/additive/e15/. Last accessed 21 Feb 2013.

  49. deFreitas LC, Kaneko S. Ethanol demand in Brazil: regional approach. Energy Policy. 2011;39(5):2289–98.

    Article  Google Scholar 

  50. Zurgiggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenergy Res. 2012;5(4):814–28.

    Article  Google Scholar 

  51. Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chem. 2010;12:1493–13.

    Article  CAS  Google Scholar 

  52. Bain RL, Broer K. Gasification. In: Brown RC, editor. Thermal processing of biomass: conversion into fuels, chemicals and power. Chichester: Wiley; 2011. p. 47–77.

    Chapter  Google Scholar 

  53. Spaeth PL, Dayton DC. Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived synthesis. NREL; 2003. NREL/TP-510-34929.

    Google Scholar 

  54. Venderbosch RH, Prins W. Fast pyrolysis, chapter 5. In: Brown RC, editor. Thermal processing of biomass. New York: Wiley; 2011. p. 124–56.

    Google Scholar 

  55. Bridgewater AV. Upgrading fast pyrolysis liquids. In: Brown RC, editor. Thermal processing of biomass: conversion into fuels, chemicals and power. Chichester: Wiley; 2011. p. 157–88.

    Chapter  Google Scholar 

  56. Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM. Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed. Energy Fuels. 2011;25(11):5444–51.

    Article  CAS  Google Scholar 

  57. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen. 2011;407(1–2):1–19.

    Article  CAS  Google Scholar 

  58. Elliot DE. Hydrothermal processing. In: Brown RC, editor. Thermal processing of biomass: conversion into fuels, chemicals and power. Chichester: Wiley; 2011. p. 200–26.

    Chapter  Google Scholar 

  59. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification and biochemical pathways. Fuel. 2010;89(1):29–35.

    Article  Google Scholar 

  60. Phillips SD, Tarud JK, Biddy MJ, Dutta A. Gasoline from woody biomass via thermochemical gasification, methanol synthesis and methanol-to-gasoline technologies: a technoeconomic analysis. Ind Eng Chem Res. 2011;50(24):11734–45.

    Article  CAS  Google Scholar 

  61. Bio Economic Research Associates. U.S. Economic impact of advanced biofuels production: perspectives to 2030 bio-era. Bio Economic Research Associates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Foust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foust, T.D. (2015). Partnerships, Future, and Emerging Technologies. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_19

Download citation

Publish with us

Policies and ethics