• Sarah C. DavisEmail author
  • Stephen P. Long
Part of the Handbook of Plant Breeding book series (HBPB, volume 9)


Agave species have recently emerged as potential bioenergy feedstocks that can be grown on marginal semiarid lands, creating an economic opportunity in regions where there are few agricultural commodities. This chapter provides an introduction to Agave species that are currently cultivated at a commercial scale for the tequila and fiber industries. It then reviews the opportunities and challenges associated with developing Agave feedstocks for biofuel by integrating recent biotechnological advances with traditional knowledge of Agave production. Drought tolerance, high yield, CAM physiology, and genetic diversity are among the characteristics that make Agave species apparently attractive as feedstocks. Challenges include manual labor costs and the establishment time that is required for the crop. Opportunities for development include the use of land that is otherwise unsuited, or has become unsuitable, for other agriculture in economically depressed rural areas. Despite the additional research that is needed to identify the varieties most fit for biofuel feedstock, current technology exists to support an Agave-based biofuel production system.


Agavaceae Biofuel Ethanol Lignocellulosic Semiarid agriculture A. tequilana A. sisalana A. fourcroydes 


  1. 1.
    Borland AM, Griffiths H, Hartwell J, Smith JAC. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot. 2009;60:2879–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Davis SC, Dohleman FG, Long SP. The global potential for Agave as a biofuel feedstock. GCB Bioenergy. 2011;3:68–78.CrossRefGoogle Scholar
  3. 3.
    Fish SK, Fish PR, Madsen JH. Evidence for large-scale Agave cultivation in the Marana Community. In: Fish SK, Fish PR, Madsen JH, editors. The Marana community in the Hohokam world. Tucson: The University of Arizona Press; 1992. p. 73–81.Google Scholar
  4. 4.
    Good-Avila SV, Souza V, Gaut BS, Eguiarte LE. Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci U S A. 2006;103:9124–9.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Purseglove JW, editor. Tropical crops. London: Longman; 1972.Google Scholar
  6. 6.
    Colunga-García Marín P, Larqué Saavedra A, Eguiarte LE, Zizumbo-Villareal D. En lo ancestral hay futuro: del tequila, los mezcales y otros agaves. 1st ed. Mérida: Centro de Investigación Científica de Yucatán, A.C.; 2007.Google Scholar
  7. 7.
    Gentry HS. Agaves of continental North America. Tucson: University of Arizona Press; 1982.Google Scholar
  8. 8.
    Granick EB. A karyosystematic study of the genus Agave. Am J Bot. 1944;31:283–98.CrossRefGoogle Scholar
  9. 9.
    Palomino G, Dolezel J, Méndez I, Rubluo A. Nuclear genome size analysis of Agave tequilana Weber. Caryologia. 2003;56:37–46.CrossRefGoogle Scholar
  10. 10.
    Simpson J, Martinez HA, Abraham JM, Delgado Sandoval J, Sanchez S, Villarreal A, Cortes Romero C. Genomic resources and transcriptome mining in Agave tequilana. GCB Bioenergy. 2011;3:25–36.CrossRefGoogle Scholar
  11. 11.
    Valenzuela-Zapata AG, Nablan GP. Tequila: a natural and cultural history. Tucson: University of Arizona Press; 2004.Google Scholar
  12. 12.
    Szarek SR, Ting IP. Occurrence of crassulacean acid metabolism among plants. Photosynthetica. 1977;11:330–42.Google Scholar
  13. 13.
    Szarek SR. Occurrence of crassulacean acid metabolism – a supplementary list during 1976–1979. Photosynthetica. 1979;13:467–73.Google Scholar
  14. 14.
    Nobel PS. Remarkable agaves and cacti. Oxford: Oxford University Press; 1994.Google Scholar
  15. 15.
    Wolf J. Der Diurnale saurerhythmus. In: von W. Ruhland. (Ed.): Encyclopedia of plant physiology. Berlin/Heidelberg/New York: Springer; 1960. p. 809–89.Google Scholar
  16. 16.
    Luttge U. Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot. 2004;93:629–52.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Blunden G, Yi Y, Jewers K. Comparative leaf anatomy of Agave, Beschorneria, Doryanthes, and Furcraea species (Agavaceae-Agaveae). Bot J Linn Soc. 1973;66:157–79.CrossRefGoogle Scholar
  18. 18.
    Trombold CD, Israde-Alcantara I. Paleoenvironment and plant cultivation on terraces at La Quemada, Zacatecas, Mexico: the pollen, phytolith and diatom evidence. J Archaeol Sci. 2005;32:341–53.CrossRefGoogle Scholar
  19. 19.
    Arrizon J, Morel S, Gschaedler A, Monsan P. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem. 2010;122:123–30.CrossRefGoogle Scholar
  20. 20.
    FAO. FAO Statistics Division. 2012. Accessed 29 Nov 2012.
  21. 21.
    Shine SJ, Bhandari VK, Majaja BA. Evaluation and optimization of sisal harvesting systems. Paper, American Society of Agricultural Engineers; 1984. 15 pp.Google Scholar
  22. 22.
    Majaja BA, Chancellor WJ. The potential for mechanical harvest of sisal. Appl Eng Agric. 1997;13:703–8.CrossRefGoogle Scholar
  23. 23.
    Nuñez HM, Rodríguez LF, Khanna M. Agave for tequila and biofuels: an economic assessment and potential opportunities. GCB Bioenergy. 2011;3:43–57.CrossRefGoogle Scholar
  24. 24.
    UNEP. World atlas of desertification. 2nd ed. Washington, DC/Nairobi: United Nations Environment Programme; 1997.Google Scholar
  25. 25.
    Valenzuela-Zapata AG. A new agenda for blue agave landraces: food, energy and tequila. GCB Bioenergy. 2011;3:15–24.CrossRefGoogle Scholar
  26. 26.
    Khaliq I, Khan MA, Pearce S. Ty1-Copia retrotransposons are heterogeneous, extremely high copy number and are major players in the genome organization and evolution of Agave tequilana. Genet Resour Crop Evol. 2012;59:575–87.CrossRefGoogle Scholar
  27. 27.
    Lindsay DL, Edwards CE, Jung MG, Bailey P, Lance RF. Novel microsatellite loci for Agave parryi and cross-amplification in Agave palmeri (Agavaceae). Am J Bot. 2012;99:E295–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Sitwat A, Noor UH, Shakeel SN. Identification and validation of stable internal control for heat induced gene expression of Agave americana. Pakistan J Bot. 2012;44:1289–96.Google Scholar
  29. 29.
    Zhou W, Zhang Y, Lu J, Li J. Construction and evaluation of normalized cDNA libraries enriched with full-length sequences for rapid discovery of new genes from sisal (Agave sisalana Perr.) different developmental stages. Int J Mol Sci. 2012;13:13150–68.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Kirby RH. Vegetable fibres: botany, cultivation, and utilization. London: Hill/Leonard; 1963.Google Scholar
  31. 31.
    Valenzuela-Zapata AG. The tequila industry in Jalisco, Mexico. Desert Plants. 1985;7:65–70.Google Scholar
  32. 32.
    Mancilla-Margalli NA, Lopez MG. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J Agric Food Chem. 2006;54:7832–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Perrin RK, Fretes NF, Sesmero JP. Efficiency of midwest US corn ethanol plants: a plant survey. Energy Policy. 2009;37:1309–16.CrossRefGoogle Scholar
  34. 34.
    Carroll A, Somerville CR. Cellulosic biofuels. Annu Rev Plant Biol. 2009;60:165–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Cedeño MC. Tequila production. Crit Rev Biotechnol. 1995;15:1–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Iñiquez-Covarrubias G, Lange SE, Rowell RM. Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol. 2001;77:25–32.CrossRefGoogle Scholar
  37. 37.
    Hernandez-Salas JM, Villa-Ramirez MS, Veloz-Rendon JS, Rivera-Hernandez KN, Gonzalez-Cesar RA, Plascencia-Espinosa MA, Trejo-Estrada SR. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol. 2009;100:1238–45.CrossRefPubMedGoogle Scholar
  38. 38.
    Ha SJ, Galazka JM, Kim SR, Choi JH, Yang XM, Seo JH, Glass NL, Cate JHD, Jin YS. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 2011;108:504–9.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012;30:274–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Avila-Fernandez A, Rendon-Poujol X, Olvera C, Gonzalez F, Capella S, Peña-Alvarez A, Lopez-Mungula A. Enzymatic hydrolysis of fructans in the tequila production process. J Agric Food Chem. 2009;57:5578–85.CrossRefPubMedGoogle Scholar
  41. 41.
    Arrizon J, Gschaedler A. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process. Can J Microbiol. 2002;48:965–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Gutiérrez-Loméli M, Torres-Guzmán JC, González-Hernández GA, Cira-Chávez LA, Pelayo-Ortiz C, Ramírez-Córdova J. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration. Antonie Van Leeuwenhoek. 2008;93:363–71.CrossRefPubMedGoogle Scholar
  43. 43.
    Jin YS, Cate JHD. Model-guided strain improvement: simultaneous hydrolysis and co-fermentation of cellulosic sugars. Biotechnol J. 2012;7:328–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Cortez L, Freire WJ, Rosillo-Calle F. Biodigestion of vinasse in Brazil. Int Sugar J. 1998;100:403–13.Google Scholar
  45. 45.
    Mendez-Acosta HO, Snell-Castro R, Alcaraz-Gonzalez V, Gonzalez-Alvarez V, Pelayo-Ortiz C. Anaerobic treatment of tequila vinasses in a CSTR-type digester. Biodegradation. 2010;21:357–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energy Rev. 2012;16:1462–76.CrossRefGoogle Scholar
  47. 47.
    De Souza ZM, Prado RD, Paixao ACS, Cesarin LG. Harvest systems and residue management of sugarcane. Pesqui Odontol Bras. 2005;40:271–8.Google Scholar
  48. 48.
    Espinoza-Escalante FM, Pelayo-Ortiz C, Navarro-Corona J, Gonzalez-Garcia Y, Bories A, Gutierrez-Pulido H. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: the effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane. Biomass Bioenergy. 2009;33:14–20.CrossRefGoogle Scholar
  49. 49.
    Cedeño CM, Alvarez-Jacobs J. Production of tequila from agave: historical influences and contemporary processes. In: Jacques K, Lyons TP, Kelsall DR, editors. The alcohol textbook. 3rd ed. Nottingham: Nottingham University Press; 1999. p. 225–42.Google Scholar
  50. 50.
    Vieira MC, Heinze T, Antonio-Cruz R, Mendoza-Martinez AM. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and Agave fourcroydes. Cellulose. 2002;9:203–12.CrossRefGoogle Scholar
  51. 51.
    McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR. Plant fibres: botany, chemistry, and processing for industrial use. J Sci Food Agric. 1993;62:1–20.CrossRefGoogle Scholar
  52. 52.
    Mylsamy K, Rajendran I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fibre. J Reinf Plast Compos. 2010;29(19):2925–35. doi: 10.1177/0731684410362817.CrossRefGoogle Scholar
  53. 53.
    García-Reyes BR, Rangel-Mendez JR. Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J Chem Technol Biotechnol. 2009;84:1533–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Voinovich School of Leadership and Public AffairsOhio UniversityAthensUSA
  2. 2.Energy Biosciences Institute, Department of Plant Biology, Department of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations