Skip to main content

Sweet Sorghum: Breeding and Bioproducts

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop and is the dietary staple of more than 500 million people in over 90 countries, primarily in the developing world. However, sweet sorghum which is similar to grain sorghum except for accumulation of stalk sugars, is considered as a potential energy crop without impacting the food security of millions. Further, the sorghum stover is considered to be a potential lignocellulosic biofuel feedstock. Being a C4 plant, it has high photosynthetic rate, and several mechanisms are known to confer resilience that help produce higher yield in varied environmental conditions. This chapter not only discusses different breeding methodologies for improving candidate sugar and biomass traits but also the possible utilization of this smart feedstock for diverse biochemicals (lactic acid, xylitol, glycerol, etc.) and bioproducts (nanomaterials, anticancer and microbial compounds, adhesives, polymers, antidiabetic compounds, etc.) development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy BVS, Ramesh S, Sanjana Reddy P, Ramaiah B, Salimath PM, Rajashekar K. Sweet sorghum – a potential alternative raw material for bioethanol and bio-energy. Int Sorghum Millets Newsl. 2005;46:79–86.

    Google Scholar 

  2. Srinivasarao P, Rao SS, Seetharama N, Umakanth AV, Sanjana Reddy P, Reddy BVS, et al. Sweet sorghum for biofuel and strategies for its improvement. Information Bulletin No 77. Patancheru: International Crops research Institute for the Semi-Arid Tropics, 80 pp, ISBN: 978-92-9066-518-2, Order Code: IBE 077, 2009.

    Google Scholar 

  3. Srinivasarao P, Reddy BVS, Blümmel M, Subbarao GV, Chandraraj K, Sanjana Reddy P, et al. Sweet sorghum as a biofuel feedstock: can there be food-feed-fuel trade-offs?, ICID; 2010. Available from: http://www.corpoica.org.co/sitioWeb/Documento/JatrophaContrataciones/SWEETSORGHUMASABIOFUELSFEEDSTOCK.pdf. Accessed 8 July 2013.

  4. Reddy BVS, Ramesh S, Ashok Kumar A, Wani SP, Ortiz R, Ceballos H, et al. Biofuel crops research for energy security and rural development in developing countries. Bioenerg Res. 2008;1:248–58.

    Google Scholar 

  5. Srinivasa Rao P, Kumar CG, Malapaka J, Kamal A, Reddy BVS. Feasibility of sustaining sugars in sweet sorghum stalks during post-harvest stage by exploring cultivars and chemicals: a desk study. Sugar Tech. 2012;14:21–5.

    Google Scholar 

  6. Srinivasa Rao P, Kumar CG, Malapaka J, Kamal A, Reddy BVS. Effect of micronutrient treatments in main and ratoon crops of sweet sorghum cultivar ICSV 93046 under tropical conditions. Sugar Tech. 2012;14:370–5.

    CAS  Google Scholar 

  7. Chapman SR, Carter LP. Crop production, principle and practices. San Francisco: W.H. Freeman; 1976. 566 pp.

    Google Scholar 

  8. Datta-Mazumdar S, Poshadri A, Srinivasa Rao P, Ravinder Reddy CH, Reddy BVS. Innovative use of sweet sorghum juice in the beverage industry. Int Food Res J. 2012;19:1361–6.

    CAS  Google Scholar 

  9. Saballos A. Development and utilization of sorghum as a bioenergy crop. In: Vermerris W, editor. Genetic improvement of bioenergy crops. New York: Springer; 2008. p. 211–48.

    Google Scholar 

  10. Srinivasarao P, Sanjana Reddy P, Rathore A, Reddy BVS, Panwar S. Application of GGE biplot and AMMI model to evaluate sweet sorghum hybrids for genotype × environment interaction and seasonal adaptation. Indian J Agric Sci. 2011;81:438–44.

    Google Scholar 

  11. Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res. 2009;111:55–64.

    Google Scholar 

  12. IPCC Chapter 11. Regional climate projections. 2007. Available from: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter11.pdf. Accessed 8 July 2013.

  13. Cooper PJM, Dimes J, Rao KPC, Shapiro B, Shiferaw B, Twomlow S. Coping better with current climate variability in the rainfed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change? Agric Ecosystems Environ. 2008;126(Suppl 1–2):24–35.

    Google Scholar 

  14. Celarier RP. Cytotaxonomy of the Andropogoneae. III. Sub-tribe Sorgheae, genus, sorghum. Cytologia. 1959;23:395–418.

    Google Scholar 

  15. Clayton WD. Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorghum Adans (Gramineae). Taxonomy. 1961;10:242–3.

    Google Scholar 

  16. de Wet JMJ, Harlan JR. The origin and domestication of Sorghum bicolor. Econ Bot. 1971;25:128–35.

    Google Scholar 

  17. de Wet JMJ, Huckabay JP. The origin of Sorghum bicolor. II. Distribution and domestication. Evolution. 1967;211:787–802.

    Google Scholar 

  18. Dahlberg JA. Classification and characterization of sorghum. In: Smith CW, Frederiksen RA, editors. Sorghum, origin, history, technology and production, Wiley Series in Crop Science. New York: Wiley; 2000. p. 99–130.

    Google Scholar 

  19. Doggett H. Sorghum, Tropical agricultural series. 2nd ed. Essex: Longman Scientific; 1988.

    Google Scholar 

  20. Harlan JR, de Wet JMJ. A simplified classification of cultivated sorghum. Crop Sci. 1972;12:172–6.

    Google Scholar 

  21. Quinby JR, Karper RE. The effect of short photoperiod on sorghum varieties and first generation hybrids. J Agric Res. 1947;75:295–300.

    Google Scholar 

  22. House LR. A guide to sorghum breeding, vol. II. Patancheru: International Crops Research Institute for the Semi-Arid Tropics; 1985. p. 1–206.

    Google Scholar 

  23. Rooney WL. Genetics and cytogenetics. In: Smith CW, Frederiksen RA, editors. Sorghum, origin, history, technology and production, Wiley Series in Crop Science. New York: Wiley; 2000. p. 261–307.

    Google Scholar 

  24. Murty UR, Rao NGP. Sorghum. In: Bahl PN, Salimath PM, Mandal AK, editors. Genetics, cytogenetics and breeding of crop plants, vol. 2, cereal and commercial crops. New Delhi: Oxford & IBH Publishing; 1997. p. 197–239.

    Google Scholar 

  25. Ayyangar GNR, Ponnaiya BWX. The occurrence and inheritance of purple pigment on the glumes of sorghum close on emergence from the boot. Curr Sci. 1937;5:590.

    Google Scholar 

  26. Stephens JC. Male sterility in sorghum: its possible utilization in production of hybrid seed. J Am Soc Agron. 1937;29:690–6.

    Google Scholar 

  27. Webster OJ. Genetic studies in Sorghum vulgare (Pers.). Crop Sci. 1965;5:207–10.

    Google Scholar 

  28. Ayyangar GNR. The description of crop plant characters and their ranges of variation. IV. Variability of Indian sorghum. Indian J Agric Sci. 1942;12:527–63.

    Google Scholar 

  29. Barabas Z. Observation of sex differentiation in sorghum by use of induced male sterile mutants. Nature. 1962;195:257–9.

    Google Scholar 

  30. Andrews DJ, Webster OJ. A new factor for genetic male-sterility in Sorghum bicolor (L.) Moench. Crop Sci. 1971;11:308–9.

    Google Scholar 

  31. Karper RE, Stephens JC. Floral abnormalities in sorghum. J Hered. 1936;27:183–94.

    Google Scholar 

  32. Stephens JC, Holland PF. Cytoplasmic male sterility for hybrid sorghum seed production. Agron J. 1954;46:20–3.

    Google Scholar 

  33. Schertz KF. Male sterility in sorghum: its characteristics and importance. In: Witcombe JR, Duncan RR, editors. Use of molecular markers in sorghum and pearl millet breeding for developing countries, Norwich, UK: Proceedings of an ODA Plant Sciences Research Conference, Mar 29–Apr 1, 1993; 1994. p. 35–7.

    Google Scholar 

  34. Reddy BVS, Rai KN, Sarma NP, Kumar ISH, Saxena KB. Cytoplasmic-nuclear male sterility: origin, evaluation, and utilization in hybrid development. In: Jain HK, Kharkwal MC, editors. Plant breeding: Mendelian to molecular approaches. New Delhi: Narosa Publishers; 2003.

    Google Scholar 

  35. Ayyangar G, Ayyar M, Rao V, Nambiar A. Mendelian segregation for juiciness and sweetness in sorghum stalk. Madras Agric J. 1936;24:247–8.

    Google Scholar 

  36. Guiying L, Weibin G, Hicks A, Chapman KR. A training manual for sweet sorghum. Bangkok: FAO/CAAS/CAS; 2000.

    Google Scholar 

  37. Ritter KB, McIntyre CL, Godwin ID, Jordan DR, Chapman SC. An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica. 2007;157:161–76.

    CAS  Google Scholar 

  38. Kadam DE, Patil FB, Bhor TJ, Harer PN. Genetic diversity studies in sweet sorghum. J Maharashtra Agric Univ. 2001;26:140–3.

    Google Scholar 

  39. Ratnavathi CV, Dayakar Rao B, Seetharama N. Sweet sorghum stalk: a suitable raw material for fuel alcohol production. DSR/NRCS Report Number 12/2003. NATP (DSR) Series No. 1, Hyderabad: National Research Center for Sorghum (NRCS); 2003.

    Google Scholar 

  40. Reddy PS, Reddy BVS, Srinivasa Rao P. Genetic analysis of traits contributing to stalk sugar yield in Sorghum. Cereal Res Commun. 2011;39:453–64.

    Google Scholar 

  41. Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, et al. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci. 2008;48:2180–93.

    Google Scholar 

  42. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, et al. Genetic improvement of sorghum as a biofuel feedstock I: QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci. 2008;48:2165–79.

    Google Scholar 

  43. Sankarapandian R, Ramalingam J, Pillai MA, Vanniarajan C. Heterosis and combining ability studies for juice yield related characteristics in sweet sorghum. Ann Agric Res. 1994;15:199–204.

    Google Scholar 

  44. Selvi B, Palanisamy S. Heterosis and combining ability for grain yield in sweet sorghum. Madras Agric J. 1990;77:493–6.

    Google Scholar 

  45. AICSIP (All India Coordinated Sorghum Improvement Project) Sweet sorghum and physiology. All India Coordinated Sorghum Improvement Project Annual Progress Report for 2006–2007. AICSIP Tech. Publication No. 3, Sweet Sorghum and Physiology 2007 (Book 3 of 3-agm07 pre-meet), 102 pp, Hyderabad: National Research Centre for Sorghum; 2007.

    Google Scholar 

  46. Rooney WL, Smith CW. Techniques for developing new cultivars. In: Smith CW, Frederiksen RA, editors. Sorghum: origin, history, technology and production. New York: Wiley; 2000. p. 329–47.

    Google Scholar 

  47. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.

    CAS  PubMed  Google Scholar 

  48. Qazi HA, Bhargava S. Stem sugar accumulation in sweet sorghum – activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol. 2012. doi:10.1016/j.jplph.2012.01.005.

    PubMed  Google Scholar 

  49. Wu L, Birch RG. Physiological basis for enhanced sucrose accumulation in an engineered sugarcane cell line. Funct Plant Biol. 2010;37:1161–74.

    CAS  Google Scholar 

  50. Calvino M, Bruggmann R, Messing J. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genomics. 2011;12:356–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL. Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Sci. 2006;46:2617–22.

    CAS  Google Scholar 

  52. Taylor JRN, Emmambux MN. Gluten-free foods and beverages from millets. In: Arendt EK, Bello FD, editors. Gluten-free cereal products and beverages. London: Academic; 2008. p. 119–48.

    Google Scholar 

  53. Kayode APP, Adegbidi A, Linnemann AR, Nout MJR, Hounhouigan DJ. Quality of farmer’s varieties of sorghum and derived foods as perceived by consumers in Benin. Ecol Food Nutr. 2005;44:271–94.

    Google Scholar 

  54. Agu RC, Palmer GH. A reassessment of sorghum for lager beer brewing. Bioresour Technol. 1998;66:253–61.

    CAS  Google Scholar 

  55. Haggblade S, Holzapfel H. Industrialization of Africa’s indigenous beer brewing. In: Steinkraus KH, editor. Industrialization of indigenous fermented foods. New York: Marcel Dekker; 1989. p. 191–283.

    Google Scholar 

  56. Anonymous Anheuser-Busch introduces first nationally available sorghum beer: Redbridge. 2006. http://www.prnewswire.com/news-releases/anheuser-busch-introduces-first-nationally-available-sorghum-beer-redbridge-57209312.html. Retrieved 1 Nov 2012.

  57. Gaffer TC, Jideani AI, Nkuma I. Composition of Kunun – a non-alcoholic cereal beverage. Plant Food Human Nutr. 2002;57:73–81.

    Google Scholar 

  58. Gaffer TC, Jedeani IA, Nkuma I. Traditional production, consumption and storage of kunun, a non-alcoholic cereal beverage. Plant Food Human Nutr. 2002;57:82–5.

    Google Scholar 

  59. Maji AA, James O, Chigozie OE. Effects of chemical treatment and pasteurization on the shelf life of kunun zaki (sorghum and maize gruel). Eur J Food Res Rev. 2011;1:61–70.

    Google Scholar 

  60. Agab MA. Fermented food products ‘Hulu Mur’ drink made from Sorghum bicolor. Food Microbiol. 1985;2:147–55.

    Google Scholar 

  61. Gebrekidan B, GebreHiwot B. Sorghum injera preparation and quality parameters. In: Rooney LW, Murty DS, editors. Proceedings of the international symposium on sorghum grain quality. Patancheru: ICRISAT; 1982. p. 55–66.

    Google Scholar 

  62. El Tinay AH, Abdel Gadir AM, El Hidai M. Sorghum fermented kisra bread. 1. Nutritive value of kisra. J Sci Food Agric. 1979;30:859–63.

    PubMed  Google Scholar 

  63. Mahgoub SEO, Ahmed BM, Ahmed MMO, El Agib El Nazeer AA. Effect of traditional Sudanese processing of kisra bread and hulu-mur drink on their thiamine, riboflavin and mineral contents. Food Chem. 1999;67:129–33.

    CAS  Google Scholar 

  64. Frater R, Hird FJ, Moss HJ. Role of disulphide exchange reactions in the relaxation of strains introduced in dough. J Sci Food Agric. 1961;12:269–73.

    CAS  Google Scholar 

  65. Babu KS. Influence of reducing agents emulsifiers on the quality of cream crackers. MSc thesis. Mysore: University of Mysore; 1995.

    Google Scholar 

  66. El-Khalifa AEO, El-Tinay AH. Effect of cysteine on bakery products from wheat–sorghum blends. Food Chem. 2002;77:133–7.

    CAS  Google Scholar 

  67. Worley JW, Cundiff JS. System analysis of sweet sorghum harvest for ethanol production in the Piedmont. Trans ASAE. 1991;34:539–47.

    Google Scholar 

  68. Weitzel TT, Cundiff JS, Vaughan DH. Optimization of sweet sorghum processing parameters. Trans ASAE. 1989;32:273–9.

    Google Scholar 

  69. Day DF, Sarkar D. Fuel alcohol from sweet sorghum: microbial aspects. Dev Ind Microbiol. 1982;23:361–6.

    CAS  Google Scholar 

  70. Bryan WL, Monroe GE, Caussanel PM. Solid-phase fermentation and juice expression systems for sweet sorghum. Trans ASAE. 1985;28:268–74.

    Google Scholar 

  71. Kundiyana DK. “Sorganol”: in-field production of ethanol from sweet sorghum. MSc thesis, 1996.

    Google Scholar 

  72. Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P. Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2007;23:1497–501.

    CAS  Google Scholar 

  73. Liu R, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour Technol. 2008;99:847–54.

    CAS  PubMed  Google Scholar 

  74. Mohite U, SivaRaman H. Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells. Biotechnol Bioeng. 1983;26:1126–7.

    Google Scholar 

  75. Khongsay N, Laopaiboon L, Laopaiboon P. Continuous ethanol production from sweet sorghum stem juice using stirred tank and tubular bioreactors. J Biotechnol. 2008;136:S446–6.

    Google Scholar 

  76. Nuanpeng S, Laopaiboon L, Srinophakun P, Klanrit P, Jaisil P, Laopaiboon P. Ethanol production from sweet sorghum juice under very high gravity conditions: batch, repeated-batch and scale up fermentation. Electron J Biotechnol. 2011;14:1. http://dx.doi.org/10.2225/vol14-issue1-fulltext-2. Retrieved on 1 Nov 2012.

  77. Yu J, Zhang X, Tan T. Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol. 2008;89:1056–9.

    CAS  Google Scholar 

  78. Salvi DA, Aita GM, Robert D, Bazan V. Ethanol production from sorghum by a dilute ammonia pretreatment. J Ind Microbiol Biotechnol. 2010;37:27–34.

    CAS  PubMed  Google Scholar 

  79. Mamma D, Koullas D, Fountoukidis G, Kekos D, Makris BJ, Koukios E. Bioethanol from sweet sorghum: simultaneous saccharification and fermentation of carbohydrates by a mixed microbial culture. Process Biochem. 1996;31:377–81.

    CAS  Google Scholar 

  80. Meng N, Leung DYC, Leung MKH, Sumathy K. An overview of hydrogen production from biomass. Fuel Process Technol. 2006;87:461–72.

    Google Scholar 

  81. Prakasham RS, Brahmaiah P, Nagaiah D, Srinivasa Rao P, Reddy BVS, Sreenivas Rao R, Hobbs PJ. Impact of low lignin containing brown midrib sorghum mutants to harness biohydrogen production using mixed anaerobic consortia. Int J Hydrogen Energy. 2012;37:3186–90.

    CAS  Google Scholar 

  82. Prakasham RS, Brahmaiah P, Sathish T, Sambasiva Rao KRS. Fermentative biohydrogen production by mixed anaerobic consortia: impact of glucose to xylose ratio. Int J Hydrogen Energy. 2009;34:9354–61.

    CAS  Google Scholar 

  83. Prakasham RS, Sathish T, Brahmaiah P. Biohydrogen production process optimization using anaerobic mixed consortia: a prelude study for use of agroindustrial material hydrolysate as substrate. Bioresour Technol. 2010;14:5708–11.

    Google Scholar 

  84. Ntaikou I, Gavala HN, Kornaros M, Lyberatos G. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy. 2008;33:1153–63.

    CAS  Google Scholar 

  85. Billa E, Koullas DP, Monties B, Koukios EG. Structure and composition of sweet sorghum stalk components. Ind Crops Prod. 1997;6:297–302.

    CAS  Google Scholar 

  86. Nagaiah D, Srinivasa Rao P, Prakasham RS, Uma A, Radhika K, Barve Y, Umakanth AV. High biomass sorghum as a potential raw material for biohydrogen production: a preliminary evaluation. Curr Trends Biotechnol Pharm. 2012;6:183–9.

    CAS  Google Scholar 

  87. Suppmann B, Sawers G. Isolation and characterization of hypophosphite resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol. 1994;11:965–82.

    CAS  PubMed  Google Scholar 

  88. Thurston B, Dawson KA, Strobel HJ. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl Environ Microbiol. 1994;60:1087–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Koku H, Eroglu I, Gunduz U, Yucel M, Turker L. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy. 2002;27:1315–29.

    CAS  Google Scholar 

  90. Hojilla-Evangelista MP, Bean SR. Evaluation of sorghum flour as extender in plywood adhesives for sprayline coaters or foam extrusion. Ind Crops Prod. 2011;34:1168–72.

    CAS  Google Scholar 

  91. Datar R, Huang J, Maness PC, Mohagheghi A, Czernik S, Chornet E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam explosion process. Int J Hydrogen Energy. 2007;32:932–9.

    CAS  Google Scholar 

  92. Li CL, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. J Environ Sci Technol. 2007;37:1–39.

    Google Scholar 

  93. Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. J Biomass Bioenerg. 2007;3:250–4.

    Google Scholar 

  94. Pan C, Zhang S, Fan Y, Hou H. Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrogen Energy. 2009;34:1–7.

    Google Scholar 

  95. Ivanova G, Rakhely G, Kovacs KL. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy. 2009;34:3659–70.

    CAS  Google Scholar 

  96. Nasirian N. Biological hydrogen production from acid-pretreated straw by simultaneous saccharification and fermentation. Afr J Agric Res. 2012;76:876–82.

    Google Scholar 

  97. Brown RC. Biomass-derived hydrogen from a thermally ballasted gasifier, FY 2003 Progress Report, National Renewable Energy Laboratory, 2003.

    Google Scholar 

  98. Argun H, Kargi F, Kapdan IK, Oztekin R. Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energy. 2008;33:1813–9.

    CAS  Google Scholar 

  99. Niel EWJV, Claassen PAM, Stams AJM. Substrate and production inhibition of hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng. 2003;81:255–62.

    PubMed  Google Scholar 

  100. Gao C, Zhai Y, Ding Y, Wu Q. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy. 2010;87:756–61.

    CAS  Google Scholar 

  101. Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol. 2010;101:3623–7.

    CAS  PubMed  Google Scholar 

  102. Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV. Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol. 2010;101:1385–8.

    CAS  PubMed  Google Scholar 

  103. Kumar CG, Mamidyala SK, Reddy MN, Reddy BVS. Silver glyconanoparticles functionalized with sugars of sweet sorghum syrup as an antimicrobial agent. Process Biochem. 2012;47:1488–95.

    CAS  Google Scholar 

  104. Kumar CG, Mamidyala SK, Sreedhar B, Reddy BVS. Synthesis and characterization of gold glyconanoparticles functionalized with sugars of sweet sorghum syrup. Biotechnol Prog. 2011;27:1455–63.

    CAS  PubMed  Google Scholar 

  105. De la Fuente JM, Penades S. Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. Biochim Biophys Acta. 2006;1760:636–51.

    PubMed  Google Scholar 

  106. Aachary AA, Prapulla SG. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf. 2010;10:1–16. doi:10.1111/j.1541-4337.2010.00135.x.

    Google Scholar 

  107. Vázquez MJ, Alonso JL, Domínguez H, Parajó JC. Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol. 2000;11:387–93.

    Google Scholar 

  108. Okazaki M, Fujikawa S, Matsumoto N. Effect of xylooligosaccharide on the growth of bifidobacteria. J Jpn Soc Nutr Food Sci. 1990;43:395–401.

    CAS  Google Scholar 

  109. Suvarna Lakshmi G, Uma Maheshwari B, Prakasham RS. Biosynthesis of xylobiose: a strategic way to enrich the value of oil palm empty fruit bunch fiber. J Microbiol Biotechnol. 2012;22:1084–91.

    PubMed  Google Scholar 

  110. Verbruggen MA, Spronk BA, Schols HA, Beldman G, Voragen AGJ, Thomas JR, et al. Structures of enzymically derived oligosaccharides from sorghum glucuronoarabinoxylan. Carbohydr Res. 1998;306:265–74.

    CAS  PubMed  Google Scholar 

  111. Chung I-M, Kim E-H, Yeo M-A, Kim S-J, Seo M-C, Moon H-I. Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Res Int. 2011;44:127–32.

    CAS  Google Scholar 

  112. Wu L, Huang Z, Qin P, Ren G. Effects of processing on phytochemical profiles and biological activities for production of sorghum tea. Food Res Int. 2012; http://dx.doi.org/10.1016/j.foodres.2012.07.062. Retrieved on 1 Nov 2012.

  113. William-Olsson T. Alpha-glucosidase inhibition in obesity. Acta Med Scand Suppl. 1985;706:1–39.

    CAS  PubMed  Google Scholar 

  114. Cai YZ, Sun M, Xing J, Luo Q, Corke H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006;78:2872–88.

    CAS  PubMed  Google Scholar 

  115. Awika JM, Rooney LW. Sorghum phytochemicals and their potential impact on human health. Phytochemistry. 2004;65:1199–221.

    CAS  PubMed  Google Scholar 

  116. Dlamini NR, Taylor JRN, Rooney LW. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem. 2007;105:1412–9.

    CAS  Google Scholar 

  117. Dykes L, Rooney LW. Sorghum and millet phenols and antioxidants. J Cereal Sci. 2006;44:236–51.

    CAS  Google Scholar 

  118. Khalil A, Baltenweck-Guyot R, Ocampo-Torres R, Albrecht P. Retrodihydrochalcones in Sorghum species: key intermediates in the biosynthesis of 3-deoxyanthocyanidins? Phytochem Lett. 2012;5:174–6.

    CAS  Google Scholar 

  119. Kil HY, Seong ES, Ghimire BK, Chung I-M, Kwon SS, Goh EJ, et al. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem. 2009;115:1234–9.

    CAS  Google Scholar 

  120. Ćetković GS, Čanadanović-Brunet JM, Djilas SM, Tumbas VT, Markov SL, Cvetković DD. Antioxidant potential, lipid peroxidation inhibition and antimicrobial activities of Satureja montana subsp. kitaibelli extracts. Int J Mol Sci. 2007;8:1013–27.

    PubMed Central  Google Scholar 

  121. Kharas GB, Sanchez-Riera F, Severson DK. Polymers of lactic acid. In: Mobley DP, editor. Plastics from microbes: microbial synthesis of polymers and polymer precursors. Munich: Hanser Publishers; 1994. p. 93–137.

    Google Scholar 

  122. Wee YJ, Kim JN, Ryu HW. Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol. 2006;44:163–72.

    CAS  Google Scholar 

  123. Yadav AK, Bipinraj NK, Chaudhari AB, Kothari RM. Production of L (+) lactic acid from sweet sorghum, date palm, and golden syrup as alternative carbon sources. Starch/Stärke. 2011;63:632–6.

    CAS  Google Scholar 

  124. Zhan X, Wang D, Tuinstra MR, Bean S, Seib PA, Sun XS. Ethanol and lactic acid production as affected by sorghum genotype and location. Ind Crops Prod. 2003;18:245–55.

    CAS  Google Scholar 

  125. Yu J, Zhang T, Zhong J, Zhang X, Tan T. Biorefinery of sweet sorghum stem. Biotechnol Adv. 2012;30:811–6.

    CAS  PubMed  Google Scholar 

  126. Buffo RA, Weller CL, Gennadios A. Films from laboratory-extracted sorghum kafirin. Cereal Chem. 1997;74:473–5.

    CAS  Google Scholar 

  127. Srinivasa Rao P, Ganesh Kumar C, editors. Characterization of tropical sweet sorghum cultivars. Springer brief. 2013: 130 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Srinivasa Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rao, P.S., Kumar, C.G., Prakasham, R.S., Rao, A.U., Reddy, B.V.S. (2015). Sweet Sorghum: Breeding and Bioproducts. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_1

Download citation

Publish with us

Policies and ethics