Skip to main content

Developing Bilayer-Based Delivery Systems for Oral Delivery of Subunit Vaccines

  • 1758 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Orally administering vaccines can offer significant advantages in terms of immune responses and ease of administration in comparison to injectable vaccines. However there are a series of barriers in the gastrointestinal (GI) tract that must be overcome for effective oral vaccination including the highly acidic conditions, digestive enzymes and effective vaccine uptake. Although there are a few licensed oral vaccines, such as the oral polio vaccine (OPV) available for human use, it is essential to develop a broader range of mucosal vaccines. Particulate delivery systems, which protect the antigens and can deliver them to the site of action where an immune response can be initiated, offer a viable option. We have investigated the use of non-ionic-based vesicles (niosomes and bilosomes), and using various characterisation and analytical techniques we have developed vesicles that are stable and able to retain antigen in gastric conditions. Oral biodistribution studies show that using these vesicles as antigen delivery systems, we can increase the delivery of oral vaccines through the GI tract. In addition, vaccination with influenza antigen incorporated into bilosomes can effectively reduce fever and suppress lung inflammation in a challenge model. This chapter outlines the development of these bilosome systems and their critical formulation attributes.

Keywords

  • Bilosomes
  • Niosomes
  • Oral vaccine delivery
  • Surfactants
  • Biodistribution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_6
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7

References

  • Allison AG, Gregoriadis G (1974) Liposomes as immunological adjuvants. Nature 252(5480):252

    CAS  PubMed  Google Scholar 

  • Almeida J, Edwards DC, Brand C, Heath T (1975) Formation of virosomes from influenza subunits and liposomes. Lancet 306:899–901

    Google Scholar 

  • Aramaki Y, Tomizawa H, Hara T, Yachi K, Kikuchi H, Tsuchiya S (1993) Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharm Res 10:1228–1231

    CAS  PubMed  Google Scholar 

  • Audran R, Peter K, Dannull J, Men Y, Scandella E, Groettrup M, Gander B, Corradin G (2003) Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine 21:1250–1255

    CAS  PubMed  Google Scholar 

  • Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS (1985) The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 37:237–242

    CAS  PubMed  Google Scholar 

  • Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A (1985) The preparation and properties of niosomes–non-ionic surfactant vesicles. J Pharm Pharmacol 37:863–868

    CAS  PubMed  Google Scholar 

  • Baldwin SL, Bertholet S, Reese VA, Ching LK, Reed SG, Coler RN (2012) The importance of adjuvant formulation in the development of a tuberculosis vaccine. J Immunol 188:2189–2197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    CAS  PubMed  Google Scholar 

  • Baudner BC, O’Hagan DT (2010) Bioadhesive delivery systems for mucosal vaccine delivery. J Drug Target 18:752–770

    CAS  PubMed  Google Scholar 

  • Baxter D (2007) Active and passive immunity, vaccine types, excipients and licensing. Occup Med 57:552–556

    Google Scholar 

  • Bennett E, Mullen AB, Ferro VA (2009) Translational modifications to improve vaccine efficacy in an oral influenza vaccine. Methods 49:322–327

    CAS  PubMed  Google Scholar 

  • Bilsborough J, Viney JL (2004) In vivo enhancement of dendritic cell function. Ann N Y Acad Sci 1029:83–87

    CAS  PubMed  Google Scholar 

  • Breau LM, Mcgrath PJ, Craig KD, Santor D, Cassidy KL, Reid GJ (2001) Facial expression of children receiving immunizations: a principal components analysis of the child facial coding system. Clin J Pain 17:178–186

    CAS  PubMed  Google Scholar 

  • Brewer JM, Alexander J (1994) Studies on the adjuvant activity of non-ionic surfactant vesicles: adjuvant-driven Igg2a production independent of MHC control. Vaccine 12(7):613–619

    CAS  PubMed  Google Scholar 

  • Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C (2007) Distinct pathways of antigen uptake and intracellular routing in Cd4 and Cd8 t cell activation. Science 316:612–616

    CAS  PubMed  Google Scholar 

  • Carafa, M., E. Santucci, et al. (1998). “Preparation and properties of new unilamellar non-ionic/ionic surfactant vesicles.” International Journal of Pharmaceutics 160(1): 51–59

    Google Scholar 

  • Chadwick S, Kriegel C, Amiji M (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62:394–407

    CAS  PubMed  Google Scholar 

  • Chambers MA, Wright DC, Brisker J, Williams A, Hatch G, Gavier-Widen D, Hall G, Marsh PD, Glyn Hewinson R (2004) A single dose of killed mycobacterium bovis Bcg in a novel class of adjuvant (novasome) protects guinea pigs from lethal tuberculosis. Vaccine 22:1063–1071

    CAS  PubMed  Google Scholar 

  • Chen H, Torchilin V, Langer R (1996) Polymerized liposomes as potential oral vaccine carriers: stability and bioavailability. J Control Release 42:263–272

    CAS  Google Scholar 

  • Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, Wu W (2009) Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376:153–160

    CAS  PubMed  Google Scholar 

  • Clark MA, Jepson MA, Hirst BH (2001) Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev 50:81–106

    CAS  PubMed  Google Scholar 

  • Conacher M, Alexander J, Brewer JM (2001) Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19:2965–2974

    CAS  PubMed  Google Scholar 

  • Conway A, Madrigal-Estebas L, Mcclean S, Brayden D, Mills K (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940–1950

    CAS  PubMed  Google Scholar 

  • Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Las Heras AI, Rodríguez Saint-Jean S, Pérez-Prieto SI (2010) Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. Fish Shellfish Immunol 28:562–570

    Google Scholar 

  • Des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    CAS  PubMed  Google Scholar 

  • Di Fabio JL, De Quadros C (2001) Considerations for combination vaccine development and use in the developing world. Clin Infect Dis 33:S340–S345

    PubMed  Google Scholar 

  • Ebel JP (1990) A method for quantifying particle absorption from the small intestine of the mouse. Pharm Res 7:848–851

    CAS  PubMed  Google Scholar 

  • Eldridge, J. H., J. A. Meulbroek, et al. (1989). “Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response.” Adv Exp Med Biol 251: 191–202

    Google Scholar 

  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR (1990) Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11:205–214

    CAS  Google Scholar 

  • Fattal, E., S. Pecquet, et al. (2002). “Biodegradable microparticles for the mucosal delivery of antibacterial and dietary antigens.” Int J Pharm 242(1-2): 15–24

    Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fine PE, Carneiro IA (1999) Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative. Am J Epidemiol 150:1001–1021

    CAS  PubMed  Google Scholar 

  • Florence AT (2005) Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today Technol 2:75–81

    CAS  PubMed  Google Scholar 

  • Freitas C, Müller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (Sln™) dispersions. Int J Pharm 168:221–229

    CAS  Google Scholar 

  • Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–158

    CAS  PubMed  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    PubMed Central  PubMed  Google Scholar 

  • González-Rodríguez M, Rabasco A (2011) Charged liposomes as carriers to enhance the permeation through the skin. Expert Opin Drug Deliv 8:857–871

    PubMed  Google Scholar 

  • Graham JE, Borda-Rodriguez A, Huzair F, Zinck E (2012) Capacity for a global vaccine safety system: the perspective of national regulatory authorities. Vaccine 30:4953–4959

    PubMed  Google Scholar 

  • Gregoriadis G, Ryman BE (1971) Liposomes as carriers of enzymes: a new approach to the treatment of storage diseases. Biochem J 124(5):58

    Google Scholar 

  • Gregoriadis G, Mccormack B, Obrenovic M, Saffie R, Zadi B, Perrie Y (1999) Vaccine entrapment in liposomes. Methods 19:156–162

    CAS  PubMed  Google Scholar 

  • Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G (1979) Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci 1:303–314

    CAS  PubMed  Google Scholar 

  • Hanes J, Chiba M, Langer R (1995) Polymer microspheres for vaccine delivery. Pharm Biotechnol 6:389–412

    CAS  PubMed  Google Scholar 

  • Heinsbroek E, Ruitenberg EJ (2010) The global introduction of inactivated polio vaccine can circumvent the oral polio vaccine paradox. Vaccine 28:3778–3783

    PubMed  Google Scholar 

  • Henriksen-Lacey M, Bramwell V, Perrie Y* (2010) Radiolabelling of antigen and liposomes for vaccine biodistribution studies. Pharmaceutics 2:91–104

    CAS  PubMed Central  Google Scholar 

  • Holmgren J, Czerkinsky C (1992) Cholera as a model for research on mucosal immunity and development of oral vaccines. Curr Opin Immunol 4:387–391

    CAS  PubMed  Google Scholar 

  • Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11:S45–S53

    CAS  PubMed  Google Scholar 

  • Holmgren J, Harandi AM, Czerkinsky C (2003) Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin b subunit and CpG DNA. Expert Rev Vaccines 2:205–217

    CAS  PubMed  Google Scholar 

  • Hu S, Niu M, Hu F, Lu Y, Qi J, Yin Z, Wu W (2013) Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm 441(1–2):693–700

    CAS  PubMed  Google Scholar 

  • Hull HF, Minor PD (2005) When can we stop using oral poliovirus vaccine? J Infect Dis 192:2033–2035

    PubMed  Google Scholar 

  • Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–142

    CAS  PubMed  Google Scholar 

  • Igartua M, Hernandez R, Esquisabel A, Gascon A, Calvo M, Pedraz J (1998) Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres. J Control Release 56:63–73

    CAS  PubMed  Google Scholar 

  • Israelachvili JN, Mitchell DJ (1975) A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta 389(1):13–19

    CAS  PubMed  Google Scholar 

  • Israelachvili JN, Mitchell DJ, And Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470(2):185–201

    CAS  PubMed  Google Scholar 

  • Iwasaki A, Kelsall BL (1999) Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190:229–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF (2001) Regulated Mip-3alpha/Ccl20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 280:G710–G719

    CAS  PubMed  Google Scholar 

  • Jacob SS, Cherian S, Sumithra TG, Raina OK, Sankar M (2013) Edible vaccines against veterinary parasitic diseases—current status and future prospects. Vaccine 31:1879–1885

    CAS  PubMed  Google Scholar 

  • Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Investig 100:6–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kane A, Lloyd J, Zaffran M, Simonsen L, Kane M (1999) Transmission of hepatitis B, hepatitis C and human immunodeficiency viruses through unsafe injections in the developing world: model-based regional estimates. Bull World Health Organ 77:801–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiyono H, Fukuyama S (2004) Nalt- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    CAS  PubMed  Google Scholar 

  • Kraehenbuhl JP, Neutra MR (2000) Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 16:301–332

    CAS  PubMed  Google Scholar 

  • Kumar VV (1991) Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci USA 88(2):444–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langer R, Cleland JL, Hanes J (1997) New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev 28:97–119

    PubMed  Google Scholar 

  • Langridge WH (2000) Edible vaccines. Sci Am 283:66–71

    CAS  PubMed  Google Scholar 

  • Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070:187–192

    CAS  PubMed  Google Scholar 

  • Lavelle EC, Sharif S, Thomas NW, Holland J, Davis SS (1995) The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv Drug Deliv Rev 18:5–22

    CAS  Google Scholar 

  • Levine MM (2000) Immunization against bacterial diseases of the intestine. J Pediatr Gastroenterol Nutr 31:336–355

    CAS  PubMed  Google Scholar 

  • Lycke N (2004) From toxin to adjuvant: the rational design of a vaccine adjuvant vector, CTA1-DD/ISCOM. Cell Microbiol 6:23–32

    CAS  PubMed  Google Scholar 

  • Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20:153–214

    CAS  PubMed  Google Scholar 

  • Mann JFS, Ferro VA, Mullen AB, Tetley L, Mullen M, Carter KC, Alexander J, Stimson WH (2004) Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 22:2425–2429

    CAS  PubMed  Google Scholar 

  • Mann JFS, Scales HE, Shakir E, Alexander J, Carter KC, Mullen AB, Ferro VA (2006) Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 38:90–95

    CAS  PubMed  Google Scholar 

  • Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, Abe M (2003) Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B Biointerfaces 30:129–138

    CAS  Google Scholar 

  • Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416

    CAS  PubMed  Google Scholar 

  • Minor, P. (2009). “Vaccine-derived poliovirus (VDPV): Impact on poliomyelitis eradication.” Vaccine 27(20): 2649–2652

    Google Scholar 

  • Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5:905–916

    CAS  PubMed  Google Scholar 

  • Mohammed AR, Bramwell VW, Coombes AGA, And Perrie Y (2006) Lyophilisation and sterilisation of liposomal vaccines to produce stable and sterile products. Methods 40(1):30–38

    CAS  PubMed  Google Scholar 

  • Mowat MA (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nature 3:331–341

    CAS  Google Scholar 

  • Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148–158

    CAS  PubMed  Google Scholar 

  • Ning M, Guo Y, Pan H, Yu H, And Gu Z (2005) Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv 12(6):399–407

    CAS  PubMed  Google Scholar 

  • Ning J-F, Zhu W, Xu J-P, Zheng C-Y, Meng X-L (2009) Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine 27:1127–1135

    CAS  PubMed  Google Scholar 

  • Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, Qi J, Wu W (2012) Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm 81:265–272

    CAS  PubMed  Google Scholar 

  • Norris DA, Puri N, Sinko PJ (1998) The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 34:135–154

    CAS  PubMed  Google Scholar 

  • O’Hagan D, Rahman D, Mcgee J, Jeffery H, Davies M, Williams P, Davis S, Challacombe S (1991) Biodegradable microparticles as controlled release antigen delivery systems. Immunology 73:239–242

    PubMed Central  PubMed  Google Scholar 

  • Ogra PL (2010) Ageing and its possible impact on mucosal immune responses. Ageing Res Rev 9:101–106

    CAS  PubMed  Google Scholar 

  • O’Hagan DT, Illum L (1990) Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine. Crit Rev Ther Drug Carrier Syst 7:35–97

    PubMed  Google Scholar 

  • Okada JI, Cohen S, Langer R (1995) In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharm Res 12:576–582

    CAS  PubMed  Google Scholar 

  • Perrie Y, Obrenovic M, Mccarthy D, Gregoriadis G (2002) Liposome (lipodine)-mediated DNA vaccination by the oral route. J Liposome Res 12:185–197

    CAS  PubMed  Google Scholar 

  • Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G, Dougan G, Mills KH, Rappuoli R, Del Giudice G (2001) Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19:2534–2541

    CAS  PubMed  Google Scholar 

  • Plant A, Williams NA (2004) Modulation of the immune response by the cholera-like enterotoxins. Curr Top Med Chem 4:509–519

    CAS  PubMed  Google Scholar 

  • Rajesh Kumar S, Ishaq Ahmed VP, Parameswaran V, Sudhakaran R, Sarath Babu V, Sahul Hameed AS (2008) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol 25:47–56

    CAS  PubMed  Google Scholar 

  • Rappuoli R, Pizza M, Douce G, Dougan G (1999) Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol Today 20:493–500

    CAS  PubMed  Google Scholar 

  • Russell-Jones GJ (2000) Oral vaccine delivery. J Control Release 65:49–54

    CAS  PubMed  Google Scholar 

  • Santiago (1995) Vaccine design: the subunit and adjuvant approach. In: Powell MF, Newman MJ (eds). Plenum Press, London

    Google Scholar 

  • Sarti F, Perera G, Hintzen F, Krotti K, Jarageorgiou V, Kammona O, Kiparissides C, Berkop-Schnurch A (2011) In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32(16):4052–4057

    CAS  PubMed  Google Scholar 

  • Schijns VEJC (2000) Immunological concepts of vaccine adjuvant activity: commentary. Curr Opin Immunol 12:456–463

    CAS  PubMed  Google Scholar 

  • Schubert R, Jaroni H, Schoelmerich J, Schmidt KH (1983) Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion 28:181–190

    CAS  PubMed  Google Scholar 

  • Shakweh M, Besnard M, Nicolas VR, Fattal E (2005) Poly(lactide-co-glycolide) particles of different physicochemical properties and their uptake by Peyer’s patches in mice. Eur J Pharm Biopharm 61:1–13

    CAS  PubMed  Google Scholar 

  • Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP (2008) Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 11:59–66

    CAS  PubMed  Google Scholar 

  • Srinivas S, Kumar YA, Hemanth A, And Anitha M (2010) Preparation and evaluation of niosomes containing aceclofenac. Dig J Nanomater Biostruct 5(1):249–254

    Google Scholar 

  • Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T (2004) Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet’s disease. Clin Exp Immunol 137:201–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storni T, Kundig T, Senti G, Johansen P (2005) Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57:333–355

    CAS  PubMed  Google Scholar 

  • Tabata Y, Ikada Y (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9:356–362

    CAS  PubMed  Google Scholar 

  • Tamura, S. I. and T. Kurata (2000). “A proposal for safety standards for human use of cholera toxin (or Escherichia coli heat-labile enterotoxin) derivatives as an adjuvant of nasal inactivated influenza vaccine.” Jpn J Infect Dis 53(3): 98–106

    Google Scholar 

  • Tomizawa H, Aramaki Y, Fujii Y, Kara T, Suzuki N, Yachi K, Kikuchi H, Tsuchiya S (1993) Uptake of phosphatidylserine liposomes by rat Peyer’s patches following intraluminal administration. Pharm Res 10:549–552

    CAS  PubMed  Google Scholar 

  • Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334

    CAS  PubMed  Google Scholar 

  • Troy SB, Ferreyra Reyes L, Huang C, Mahmud N, Lee YJ, Canizales Quintero S, Flaster H, Baez Saldana R, Garcia-Garcia L, Maldonado Y (2011) Use of a novel real-time PCR assay to detect oral polio vaccine (OPV) shedding and reversion in stool and sewage samples after a mexican national immunization day. J Clin Microbiol

    Google Scholar 

  • Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70

    CAS  Google Scholar 

  • Uchegbu IF, Florence AT (1995) Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci 58:1–55

    CAS  Google Scholar 

  • Uchegbu IF, Double JA, Turton JA, Florence AT (1995) Distribution, metabolism and tumoricidal activity of doxorubicin administered in sorbitan monostearate (Span 60) niosomes in the mouse. Pharm Res 12(7):1019–1024

    CAS  PubMed  Google Scholar 

  • Wang D, Xu J, Feng Y, Liu Y, Mchenga SSS, Shan F, Sasaki J-I, Lu C (2010) Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 28:3134–3142

    CAS  PubMed  Google Scholar 

  • Webster DE, Gahan ME, Strugnell RA, Wesselingh SL (2003) Advances in oral vaccine delivery options: what is on the horizon? Am J Drug Deliv 1:227–240

    Google Scholar 

  • Wilkhu J, Mcneil SE, Kirby DJ, Perrie Y (2011) Formulation design considerations for oral vaccines. Ther Deliv 2:1141–1164

    CAS  PubMed  Google Scholar 

  • Wilkhu J, Mcneil S, Anderson D, Perrie Y (2013a) Consideration of the efficacy of non-ionic vesicles in the targeted delivery of oral vaccines. Drug Deliv Transl Res 4:233–245

    Google Scholar 

  • Wilkhu J, Vangala A, Mohammed A, Perrie Y (2013b) Designing nonionic surfactant vesicles for the delivery of antigens for systemic and alternative delivery routes. In: Flower DR, Perrie Y (eds) Immunomic discovery of adjuvants and candidate subunit vaccines. Springer, New York

    Google Scholar 

  • Wilkhu JS, Mcneil SE, Anderson DE, Perrie Y (2013c) Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 21:291–299

    CAS  Google Scholar 

  • Wilkhu JS, Ouyang D, Kirchmeier MJ, Anderson DE, Perrie Y (2014) Investigating the role of cholesterol in the formation of non-ionic surfactant based bilayer vesicles: thermal analysis and molecular dynamics. Int J Pharm 461(1–2):331–341

    CAS  PubMed  Google Scholar 

  • Yoshida H, Lehr CM, Kok W, Junginger HE, Verhoef JC, Bouwstra JA (1992) Niosomes for oral delivery of peptide drugs. J Control Release 21:145–153

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Perrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkhu, J.S., Perrie, Y. (2015). Developing Bilayer-Based Delivery Systems for Oral Delivery of Subunit Vaccines. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_6

Download citation