Skip to main content

The Application of Liposomes as Vaccine Adjuvants

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Liposomes as a drug delivery system are well established with around 15 products in clinical use. However, liposomes also offer a range of advantages for the delivery of antigens. Due to their versatile nature, liposomes can be formulated in a range of sizes, charge and surface characteristics allowing them to not only deliver the antigen(s) to appropriate antigen-presenting cells in a controlled manner, but also for the liposomes to interact with and stimulate these cells to enhance immune responses. Within this chapter we review the factors that control liposome characteristics and how they impact vaccine adjuvant efficacy.

Keywords

  • Liposomes
  • Lipids
  • Bilayer vesicles
  • Adjuvants

Author contributed equally with all other contributors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4

References

  • Allison AC, Gregoriadis G (1974) Liposomes as immunological adjuvants. Nature 252(5480):252–252

    CAS  PubMed  CrossRef  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–796

    CAS  PubMed  CrossRef  Google Scholar 

  • Bally MB, Cullis PR, Hope MJ, (1991). Extrusion technique for producing unilamellar vesicles. Google Patents

    Google Scholar 

  • Bangham A (1961) A correlation beween surface charge and coagulant action of phospholipids. Nature 192:1197–1198

    CAS  PubMed  CrossRef  Google Scholar 

  • Bangham A, Standish M, Watkins J (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–IN27

    CAS  PubMed  CrossRef  Google Scholar 

  • Barenholz Y (2012) Doxil®—The first FDA-approved nano-drug: Lessons learned. J Control Release 160(2):117–134

    CAS  PubMed  CrossRef  Google Scholar 

  • Barnadas-Rodriguez R, Sabés M (2001) Factors involved in the production of liposomes with a high-pressure homogenizer. Int J Pharm 213(1):175–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019

    CAS  PubMed  CrossRef  Google Scholar 

  • Belliveau NM et al (2012) Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1(8):e37

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bergstrand N et al (2003) Interactions between pH-sensitive liposomes and model membranes. Biophys Chem 104(1):361–379

    CAS  PubMed  CrossRef  Google Scholar 

  • Brewer JM et al (1998) Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J Immunol 161(8):4000–4007

    CAS  PubMed  Google Scholar 

  • Brunner J, Skrabal P, Hausser H (1976) Single bilayer vesicles prepared without sonication physico-chemical properties. Biochim Biophys Acta 455(2):322–331

    CAS  PubMed  CrossRef  Google Scholar 

  • Carstens MG et al (2011) Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine 29(29–30):4761–4770

    CAS  PubMed  CrossRef  Google Scholar 

  • Christensen D et al (2007) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 6(5):785–796

    CAS  PubMed  CrossRef  Google Scholar 

  • Christensen D et al (2011) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 10(4):513–521

    CAS  PubMed  CrossRef  Google Scholar 

  • Christensen D et al (2012) A cationic vaccine adjuvant based on a saturated quaternary ammonium lipid have different in vivo distribution kinetics and display a distinct CD4 T cell-inducing capacity compared to its unsaturated analog. J Control Release 160(3):468–476

    CAS  PubMed  CrossRef  Google Scholar 

  • Deamer D, Bangham A (1976) Large volume liposomes by an ether vaporization method. Biochimica et Biophysica Acta (BBA)-Biomembranes 443, 629–634

    Google Scholar 

  • Deamer DW., 1978. Preparation and Properties of Ether‐Injection Liposomes. Annals of the New York Academy of Sciences 308, 250–258

    Google Scholar 

  • FDA. Guidance for Industry Liposome Drug Products, Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation. 2002 Apri 2013; Available from: http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/guidances/ucm064979.htm.

  • Feitosa E, Jansson J, Lindman B (2006) The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles. Chem Phys Lipids 142(1–2):128–132

    CAS  PubMed  CrossRef  Google Scholar 

  • Foged C et al (2004) Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 22(15–16):1903–1913

    CAS  PubMed  CrossRef  Google Scholar 

  • Frederiksen L et al (1997) Preparation of liposomes encapsulating water‐soluble compounds using supercritical carbon dioxide. J Pharm Sci 86(8):921–928

    CAS  PubMed  CrossRef  Google Scholar 

  • Gregoriadis G et al (2002) A role for liposomes in genetic vaccination. Vaccine 20:B1–B9

    CAS  PubMed  CrossRef  Google Scholar 

  • Guan HH et al (1998) Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug Chem 9(4):451–458

    CAS  PubMed  CrossRef  Google Scholar 

  • Hafner AM, Corthésy B, Merkle HP (2013) Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 65(10):1386–1399

    CAS  PubMed  CrossRef  Google Scholar 

  • Hauschild S et al (2005) Direct preparation and loading of lipid and polymer vesicles using inkjets. Small 1(12):1177–1180

    CAS  PubMed  CrossRef  Google Scholar 

  • Henriksen-Lacey M et al (2010a) Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[N-(N′, N′-dimethylaminoethane)carbomyl] cholesterol (DC-chol), and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. Mol Pharm 8(1):153–161

    PubMed  CrossRef  Google Scholar 

  • Henriksen-Lacey M et al (2010b) Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release 145(2):102–108

    CAS  PubMed  CrossRef  Google Scholar 

  • Henriksen-Lacey M et al (2010c) Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J Control Release 142(2):180–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Henriksen-Lacey M, Devitt A, Perrie Y (2011) The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production. J Control Release 154(2):131–137

    CAS  PubMed  CrossRef  Google Scholar 

  • Jaafar-Maalej C et al (2010) Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 20(3):228–243

    CAS  PubMed  CrossRef  Google Scholar 

  • Jahn A, Vreeland WN, Gaitan M, Locascio LE, (2004). Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. Journal of the American Chemical Society 126, 2674–2675

    Google Scholar 

  • Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M, (2007). Microfluidic directed formation of liposomes of controlled size. Langmuir 23, 6289–6293

    Google Scholar 

  • Jelinek I et al (2011) TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J Immunol 186(4):2422–2429

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Kamath AT et al (2012) Synchronization of dendritic cell activation and antigen exposure is required for the induction of Th1/Th17 responses. J Immunol 188(10):4828–4837

    CAS  PubMed  CrossRef  Google Scholar 

  • Karn PR, Cho W, Hwang S-J (2013) Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine 8(9):1529–1548

    CAS  PubMed  CrossRef  Google Scholar 

  • Kataria S et al (2011) Stealth liposomes: a review. Int J Res Ayur Pharm 2(5):1534–1538

    CAS  Google Scholar 

  • Kaur CD, Nahar M, Jain NK (2008) Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 16(10):798–805

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaur R et al (2012) Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J Control Release 158(1):72–77

    CAS  PubMed  CrossRef  Google Scholar 

  • Khan A et al (2013) Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 8:2733–2744

    PubMed Central  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    CAS  PubMed  CrossRef  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16(7):307–321

    CAS  PubMed  CrossRef  Google Scholar 

  • Li Y et al (2011) Relationships between liposome properties, cell membrane binding, intracellular processing, and intracellular bioavailability. AAPS J 13(4):585–597

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Manolova V et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazumdar T, Anam K, Ali N (2005) Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania Donovani antigens. J Parasitol 91(2):269–274

    CAS  PubMed  CrossRef  Google Scholar 

  • Meure LA, Foster NR, Dehghani F (2008) Conventional and dense gas techniques for the production of liposomes: a review. AAPS PharmSciTech 9(3):798–809

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Mifsud EJ, Tan AC-L, Jackson DC (2014) TLR agonists on the modulation of innate immune response and their potential as agents against infectious diseases. Front Immunol 5

    Google Scholar 

  • Miller CR et al (1998) Liposome–cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37(37):12875–12883

    CAS  PubMed  CrossRef  Google Scholar 

  • Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711–719

    CAS  PubMed  Google Scholar 

  • Neeland MR et al (2014) Incorporation of CpG into a liposomal vaccine formulation increases the maturation of antigen-loaded dendritic cells and monocytes to improve local and systemic immunity. J Immunol 192(8):3666–3675

    CAS  PubMed  CrossRef  Google Scholar 

  • Nordly P et al (2011a) Immunity by formulation design: Induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J Control Release 150(3):307–317

    CAS  PubMed  CrossRef  Google Scholar 

  • Nordly P et al (2011b) Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. Eur J Pharm Biopharm 77(1):89–98

    CAS  PubMed  CrossRef  Google Scholar 

  • Rappuoli R (2007) Bridging the knowledge gaps in vaccine design. Nat Biotechnol 25(12):1361–1366

    CAS  PubMed  CrossRef  Google Scholar 

  • Riaz M (1996) Liposomes preparation methods. Pak J Pharm Sci 9(1):65–77

    CAS  PubMed  Google Scholar 

  • Romberg B, Hennink W, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Rosenkrands I et al (2005) Cationic liposomes containing mycobacterial lipids: a New powerful Th1 adjuvant system. Infect Immun 73(9):5817–5826

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Swartz MA (2001) The physiology of the lymphatic system. Adv Drug Deliv Rev 50(1–2):3–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9(1):467–508

    CAS  PubMed  CrossRef  Google Scholar 

  • Taylor TM et al (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45(7–8):587–605

    CAS  PubMed  CrossRef  Google Scholar 

  • Valencia PM et al (2010) Single-step assembly of homogenous lipid–polymeric and lipid–quantum Dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4(3):1671–1679

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • van Houte A et al (1981) Characterization of immunogenic properties of haptenated liposomal model membranes in mice. V effect of membrane composition on humoral and cellular immunogenicity. Immunology 44(3):561–568

    PubMed Central  PubMed  Google Scholar 

  • Wagner A, Vorauer-Uhl K (2010) Liposome technology for industrial purposes. J Drug Deliv 2011

    Google Scholar 

  • Watson DS, Endsley AN, Huang L (2012) Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13):2256–2272

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Weigl BH, Bardell RL, Cabrera CR, Catherine R (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhigaltsev IV et al (2012) Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28(7):3633–3640

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Perrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kastner, E., Schmidt, S.T., Wilkinson, A., Christensen, D., Perrie, Y. (2015). The Application of Liposomes as Vaccine Adjuvants. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_5

Download citation