Skip to main content

Emulsions as Vaccine Adjuvants

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Vaccine adjuvants improve potency of poorly immunogenic antigens and have enabled the development of a number of vaccine candidates since the initial introduction of alum as an adjuvant. Currently there are a number of adjuvants in clinical use and many are under development. Emulsions have been used as vaccine adjuvants since the initial studies done by Freund using water-in-oil emulsions in mid 1930s, which ultimately proved to be too reactogenic for human use. The use of oil-in-water emulsions and biodegradable oils like squalene improved the tolerability and provided adjuvant properties with a broad range of antigens including glycoconjugates, inactivated viruses, recombinant proteins, etc. In addition they could also be used to co-deliver immune potentiators such as toll-like receptor (TLR) agonists. In this chapter, we will discuss the current status of emulsion adjuvants and also describe the emerging trends in this area of vaccine research and development.

Keywords

  • Influenza Vaccine
  • Drain Lymph Node
  • Vaccine Adjuvant
  • Aluminum Phosphate
  • Potent Immune Response

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_4
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  • Anderson RC, Fox CB, Dutill TS, Shaverdian N, Evers TL, Poshusta GR, Chesko J, Coler RN, Friede M, Reed SG, Vedvick TS (2010) Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf B Biointerfaces 75:123–132

    CAS  PubMed  CrossRef  Google Scholar 

  • Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1:111–118

    CAS  PubMed  CrossRef  Google Scholar 

  • Batista-Duharte A, Lindblad EB, Oviedo-Orta E (2011) Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett 203:97–105

    CAS  PubMed  CrossRef  Google Scholar 

  • Baudner BC, Ronconi V, Casini D, Tortoli M, Kazzaz J, Singh M, Hawkins LD, Wack A, O’Hagan DT (2009) MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm Res 26:1477–1485

    CAS  PubMed  CrossRef  Google Scholar 

  • Baughman WF, Jamieson GS (1922) The chemical composition of soya bean oil. J Am Chem Soc 44:2947–2952

    CAS  CrossRef  Google Scholar 

  • Behzad H, Huckriede AL, Haynes L, Gentleman B, Coyle K, Wilschut JC, Kollmann TR, Reed SG, Mcelhaney JE (2012) GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J Infect Dis 205:466–473

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Beran J, Hobzova L, Wertzova V, Kuriyakose S, Leyssen M, Surquin M, Houard S (2010) Safety and immunogenicity of an investigational adjuvanted hepatitis B vaccine (HB-AS02V) in healthy adults. Hum Vaccin 6:578–584

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ, Makidon P, Sower LE, Peterson JW, Baker JR Jr (2007) Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 75(8):4020–4029

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bielinska AU, Chepurnov AA, Landers JJ, Janczak KW, Chepurnova TS, Luker GD, Baker JR Jr (2008a) A novel, killed-virus nasal vaccinia virus vaccine. Clin Vaccine Immunol 15(2):348–358

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR Jr (2008b) Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 24:271–281

    CAS  PubMed  CrossRef  Google Scholar 

  • Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, Ballou WR, Conway DJ, Reece WH, Gothard P, Yamuah L, Delchambre M, Voss G, Greenwood BM, Hill A, Mcadam KP, Tornieporth N, Cohen JD, Doherty T (2001) Efficacy of RTS, S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 358:1927–1934

    CAS  PubMed  CrossRef  Google Scholar 

  • Boyce TG, Hsu HH, Sannella EC, Coleman-Dockery SD, Baylis E, Zhu Y, Barchfeld G, Difrancesco A, Paranandi M, Culley B, Neuzil KM, Wright PF (2000) Safety and immunogenicity of adjuvanted and unadjuvanted subunit influenza vaccines administered intranasally to healthy adults. Vaccine 19:217–226

    CAS  PubMed  CrossRef  Google Scholar 

  • Brito LA, Chan M, Baudner B, Gallorini S, Santos G, O’Hagan DT, Singh M (2011) An alternative renewable source of squalene for use in emulsion adjuvants. Vaccine 29:6262–6268

    CAS  PubMed  CrossRef  Google Scholar 

  • Caillet C, Piras F, Bernard MC, de Montfort A, Boudet F, Vogel FR, Hoffenbach A, Moste C, Kusters I (2010) AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 28:3076–3079

    CAS  PubMed  CrossRef  Google Scholar 

  • Calabro S, Tortoli M, Baudner BC, Pacitto A, Cortese M, O’Hagan DT, de Gregorio E, Seubert A, Wack A (2011) Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29:1812–1823

    CAS  PubMed  CrossRef  Google Scholar 

  • Calabro S, Tritto E, Pezzotti A, Taccone M, Muzzi A, Bertholet S, de Gregorio E, O’Hagan DT, Baudner B, Seubert A (2013) The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31:3363–3369

    CAS  PubMed  CrossRef  Google Scholar 

  • Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Coler RN, Baldwin SL, Shaverdian N, Bertholet S, Reed SJ, Raman VS, Lu X, Devos J, Hancock K, Katz JM, Vedvick TS, Duthie MS, Clegg CH, Van Hoeven N, Reed SG (2010) A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS One 5:e13677

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Coler RN, Bertholet S, Moutaftsi M, Guderian JA, Windish HP, Baldwin SL, Laughlin EM, Duthie MS, Fox CB, Carter D, Friede M, Vedvick TS, Reed SG (2011) Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One 6:e16333

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10:807–813

    CAS  PubMed  CrossRef  Google Scholar 

  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    CAS  PubMed  CrossRef  Google Scholar 

  • European Medicines Agency (2011) Humenza (Pandemic influenza vaccine (H1N1) split virion, inactivated, adjuvanted)

    Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, Mckenzie IF, Plebanski M (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154

    CAS  PubMed  CrossRef  Google Scholar 

  • Foged C, Hansen J, Agger EM (2012) License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur J Pharm Sci 45:482–491

    CAS  PubMed  CrossRef  Google Scholar 

  • Fox CB (2009) Squalene emulsions for parenteral vaccine and drug delivery. Molecules 14:3286–3312

    CAS  PubMed  CrossRef  Google Scholar 

  • Fox CB, Haensler J (2013) An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines 12:747–758

    CAS  PubMed  CrossRef  Google Scholar 

  • Garcon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an adjuvant system containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11:349–366

    CAS  PubMed  CrossRef  Google Scholar 

  • Gasparini R, Amicizia D, Lai PL, Panatto D (2012) Aflunov(®): a prepandemic influenza vaccine. Expert Rev Vaccines 11:145–157

    CAS  PubMed  CrossRef  Google Scholar 

  • Girard MP, Katz JM, Pervikov Y, Hombach J, Tam JS (2011) Report of the 7th meeting on evaluation of pandemic influenza vaccines in clinical trials, World Health Organization, Geneva, 17–18 February 2011. Vaccine 29:7579–7586

    PubMed  CrossRef  Google Scholar 

  • Gupta RK, Rost BE (2000) Aluminium compounds as vaccine adjuvants. In: O’Hagan D (ed) Vaccine adjuvants: preparation methods and research protocols. Humana, Totowa

    Google Scholar 

  • Hamouda T, Sutcliffe JA, Ciotti S, Baker JR Jr (2011) Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin Vaccine Immunol 18:1167–1175

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Hansson M, Nygren PA, Stahl S (2000) Design and production of recombinant subunit vaccines. Biotechnol Appl Biochem 32(Pt 2):95–107

    CAS  PubMed  CrossRef  Google Scholar 

  • Hilleman MR (1966) Critical appraisal of emulsified oil adjuvants applied to viral vaccines. Prog Med Virol 8:131–182

    CAS  PubMed  Google Scholar 

  • Hilleman MR (1969) The roles of early alert and of adjuvant in the control of Hong Kong influenza by vaccines. Bull World Health Organ 41:623–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hjorth RN, Bonde GM, Piner ED, Goldberg KM, Levner MH (1997) The effect of Syntex adjuvant formulation (SAF-m) on humoral immunity to the influenza virus in the mouse. Vaccine 15:541–546

    CAS  PubMed  CrossRef  Google Scholar 

  • IDRI (2012) First vaccine against fatal visceral leishmaniasis enters clinical trial. February 22, 2012

    Google Scholar 

  • Khurana S, Chearwae W, Castellino F, Manischewitz J, King LR, Honorkiewicz A, Rock MT, Edwards KM, Del Giudice G, Rappuoli R, Golding H (2010) Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci Transl Med 2(15):15ra5

    PubMed  CrossRef  Google Scholar 

  • Klucker MF, Dalencon F, Probeck P, Haensler J (2012) AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci 101:4490–4500

    PubMed  CrossRef  Google Scholar 

  • Kool M, Petrilli V, de Smedt T, Rolaz A, Hammad H, Van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759

    CAS  PubMed  CrossRef  Google Scholar 

  • Lambrecht BN, Kool M, Willart MA, Hammad H (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21:23–29

    CAS  PubMed  CrossRef  Google Scholar 

  • Leroux-Roels G (2009) Prepandemic H5N1 influenza vaccine adjuvanted with AS03: a review of the pre-clinical and clinical data. Expert Opin Biol Ther 9:1057–1071

    CAS  PubMed  CrossRef  Google Scholar 

  • Lima KM, Dos Santos SA, Rodrigues JM Jr, Silva CL (2004) Vaccine adjuvant: it makes the difference. Vaccine 22:2374–2379

    CAS  PubMed  CrossRef  Google Scholar 

  • Lindblad EB (2000) Freund’s adjuvant. In: O’Hagan D (ed) Vaccine adjuvants: preparation methods and research protocols. Humana, Totowa

    Google Scholar 

  • Linman D et al (2004) Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev 199:201–216

    CrossRef  Google Scholar 

  • Liu GC, Ahrens EH Jr, Schreibman PH, Crouse JR (1976) Measurement of squalene in human tissues and plasma: validation and application. J Lipid Res 17:38–45

    CAS  PubMed  Google Scholar 

  • Makidon PE, Bielinska AU, Nigavekar SS, Janczak KW, Knowlton J, Scott AJ, Mank N, Cao Z, Rathinavelu S, Beer MR, Wilkinson JE, Blanco LP, Landers JJ, Baker JR Jr (2008) Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One 3(8):e2954

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Mbow ML, de Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416

    CAS  PubMed  CrossRef  Google Scholar 

  • Miller E, Andrews N, Stellitano L, Stowe J, Winstone AM, Shneerson J, Verity C (2013) Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ 346:f794

    PubMed  CrossRef  Google Scholar 

  • Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, Planty C, Elouahabi A, Harvengt P, Carlsen H, Kielland A, Chomez P, Garcon N, Van Mechelen M (2011) Adjuvant System AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29:2461–2473

    CAS  PubMed  CrossRef  Google Scholar 

  • Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, O’Hagan D, Rappuoli R, de Gregorio E (2008) Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci U S A 105:10501–10506

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Murphy K, Travers P, Walport M (eds) (2008) Janeway’s immunobiology. Garland Science, London

    Google Scholar 

  • Murray R, Cohen P, Hardegree MC (1972) Mineral oil adjuvants: biological and chemical studies. Ann Allergy 30:146–151

    CAS  PubMed  Google Scholar 

  • Nagamoto T, Hattori Y, Takayama K, Maitani Y (2004) Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res 21:671–674

    CAS  PubMed  CrossRef  Google Scholar 

  • Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, Himanen SL, Hublin C, Julkunen I, Olsen P, Saarenpaa-Heikkila O, Kilpi T (2012) AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One 7:e33536

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • O’Hagan DT (2007) MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 6:699–710

    PubMed  CrossRef  Google Scholar 

  • O’Hagan DT, Singh M (2007) Vaccine adjuvants and delivery systems. Wiley, Hoboken

    Google Scholar 

  • O’Hagan DT, Ott GS, de Gregorio E, Seubert A (2012) The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30:4341–4348

    PubMed  CrossRef  Google Scholar 

  • O’Hagan DT, Ott GS, Nest GV, Rappuoli R, Giudice GD (2013) The history of MF59(®) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 12:13–30

    PubMed  CrossRef  Google Scholar 

  • Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA (2011) Systems biology approaches to new vaccine development. Curr Opin Immunol 23:436–443

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Ott G, Nest GV (2006) Development of vaccine adjuvants: a historical perspective. In: Singh M (ed) Vaccine adjuvants and delivery systems. John Wiley, Hoboken

    Google Scholar 

  • Ott G, Barchfeld GL, Van Nest G (1995) Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine 13:1557–1562

    CAS  PubMed  CrossRef  Google Scholar 

  • Ott G, Radhakrishnan R et al (2000) The adjuvant MF59: a 10 year perspective. In: O’Hagan D (ed) Vaccine adjuvants: preparation methods and research protocols. Humana, Totowa

    Google Scholar 

  • Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    CAS  PubMed  CrossRef  Google Scholar 

  • Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450

    CAS  PubMed  CrossRef  Google Scholar 

  • Rappuoli R, Aderem A (2011) A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473:463–469

    CAS  PubMed  CrossRef  Google Scholar 

  • Ribi E, Meyer TJ, Azuma I, Parker R, Brehmer W (1975) Biologically active components from mycobacterial cell walls. IV. Protection of mice against aerosol infection with virulent mycobacterium tuberculosis. Cell Immunol 16:1–10

    CAS  PubMed  CrossRef  Google Scholar 

  • Ribi E, Cantrell JL, Takayama K, Qureshi N, Peterson J, Ribi HO (1984) Lipid A and immunotherapy. Rev Infect Dis 6:567–572

    CAS  PubMed  CrossRef  Google Scholar 

  • Schijns VE, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10:539–550

    CAS  PubMed  CrossRef  Google Scholar 

  • Seubert A, Monaci E, Pizza M, O’Hagan DT, Wack A (2008) The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 180:5402–5412

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith JW, Fletcher WB, Peters M, Westwood M, Perkins FJ (1975) Response to influenza vaccine in adjuvant 65-4. J Hyg (Lond) 74:251–259

    CAS  CrossRef  Google Scholar 

  • Stills HF Jr (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46(3):280–293

    CAS  PubMed  CrossRef  Google Scholar 

  • Stuewart-Tull DE, Shimono T, Kotani S, Knights BA (1976) Immunosuppressive effect in mycobacterial adjuvant emulsions of mineral oils containing low molecular weight hydrocarbons. Int Arch Allergy Appl Immunol 52:118–128

    CAS  PubMed  CrossRef  Google Scholar 

  • Surquin M, Tielemans CL, Kulcsar I, Ryba M, Voros P, Mat O, Treille S, Dhaene M, Stolear JC, Kuriyakose SO, Leyssen MX, Houard SA (2010) Rapid, enhanced, and persistent protection of patients with renal insufficiency by AS02(V)-adjuvanted hepatitis B vaccine. Kidney Int 77:247–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Surquin M, Tielemans C, Nortier J, Jadoul M, Peeters P, Ryba M, Roznovsky L, Doman J, Barthelemy X, Crasta PD, Messier M, Houard S (2011) Anti-HBs antibody persistence following primary vaccination with an investigational AS02(v)-adjuvanted hepatitis B vaccine in patients with renal insufficiency. Hum Vaccin 7:913–918

    CAS  PubMed  CrossRef  Google Scholar 

  • Tritto E, Mosca F, de Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsai T, Kyaw MH, Novicki D, Nacci P, Rai S, Clemens R (2010) Exposure to MF59-adjuvanted influenza vaccines during pregnancy–a retrospective analysis. Vaccine 28:1877–1880

    CAS  PubMed  CrossRef  Google Scholar 

  • Vajdy M (2011) Immunomodulatory properties of vitamins, flavonoids and plant oils and their potential as vaccine adjuvants and delivery systems. Expert Opin Biol Ther 11:1501–1513

    CAS  PubMed  CrossRef  Google Scholar 

  • Vesikari T, Pepin S, Kusters I, Hoffenbach A, Denis M (2012) Assessment of squalene adjuvanted and non-adjuvanted vaccines against pandemic H1N1 influenza in children 6 months to 17 years of age. Hum Vaccin Immunother 8:1283–1292

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Vogel FR, Caillet C, Kusters IC, Haensler J (2009) Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines 8:483–492

    CAS  PubMed  CrossRef  Google Scholar 

  • Whitehouse MW, Orr KJ, Beck FW, Pearson CM (1974) Freund’s adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition. Immunology 27:311–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Windish HP, Duthie MS, Misquith A, Ireton G, Lucas E, Laurance JD, Bailor RH, Coler RN, Reed SG (2011) Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 29:7842–7848

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Withdrawal of the marketing authorisation in the European Union (2011). In: Evaluation, HMDA (ed). Based on a report issued by European Medical Agency. Report number is EMA/418809/2011 London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shah, R.R., Brito, L.A., O’Hagan, D.T., Amiji, M.M. (2015). Emulsions as Vaccine Adjuvants. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_4

Download citation