Skip to main content

Aluminum Adjuvants: Basic Concepts and Progress in Understanding

  • 1813 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

More than 80 years have passed since the initial discovery that aluminum salts, when injected together with an antigen, resulted in highly elevated specific antibody titers. Since then the aluminum adjuvants have achieved an undisputed status as the most commonly used adjuvants in human and veterinary vaccines. The present chapter compiles historical data on aluminum adjuvants from the very early start and data made obtainable thanks to the development of analytical tools for providing general insight into the mechanisms of the immune system. Applying these tools in adjuvant research have helped characterizing the aluminum adjuvants in terms of isotypic profiles, surface marker expression profiles, cytokine profiles and within the latest 5 years with the discovery of the NALP3 inflammasome its importance for the secretion of interleukin (IL)-1β and IL-18 as pro-inflammatory mediators in the early phases of the immune response. For decades very little was known about the mechanisms of action of aluminum adjuvants, and their use in vaccine design was predominantly based on empirical principles. The results from applying such analytical tools are about to take us to the next level of understanding aluminum adjuvants.

Keywords

  • Major Histocompatibility Complex Class
  • Aluminum Hydroxide
  • Tetanus Toxoid
  • Inflammatory Focus
  • Diphtheria Toxoid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_3
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4

References

  • Al-Akl NS, Chaktoura M, Kazzi NF, Usta J, Chamoun CA, Abdelnoor AM (2011) Uric acid: a possible mediator of the adjuvant effect of alum in mice immunized with ovalbumin. World J Vaccines 1:148–155

    CAS  Google Scholar 

  • Al-Shakhshir RH, Regnier FE, White JL, Hem SL (1995) Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants. Vaccine 13(1):41–44

    CAS  PubMed  Google Scholar 

  • Andrasi E, Pali N, Molnar Z, Kosel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7:273–284

    CAS  PubMed  Google Scholar 

  • Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and a cytokine. Nat Med 6(4):435–442

    CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70. J Biol Chem 277(17):15028–15034

    CAS  PubMed  Google Scholar 

  • Authier FJ, Cherin P, Creange A, Bonnotte B, Ferrer X, Abdelmoumni A, Ranoux D, Pelletier J, Figarella-Branger D, Granel B, Maisonobe T, Coquet M, Degos JD, Gherardi RK (2001) Central nervous system disease in patients with macrophagic myofasciitis. Brain 124(Pt 5):974–983

    CAS  PubMed  Google Scholar 

  • Batista-Duharte A, Lindblad EB, Oviedo-Orta E (2011) Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett 203(2):97–105

    CAS  PubMed  Google Scholar 

  • Bergfors E, Trollfors B, Inerot A (2003) Unexpectedly high incidence of persistent itching nodules and delayed hypersensitivity to aluminium in children after use of adsorbed vaccines from a single manufacturer. Vaccine 22:64–69

    PubMed  Google Scholar 

  • Böhler-Sommeregger K, Lindemayr H (1986) Contact sensitivity to aluminium. Contact Dermatitis 15:278–281

    PubMed  Google Scholar 

  • Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J (1996) In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol 26:2062–2066

    CAS  PubMed  Google Scholar 

  • Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J (1999) Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol 163(12):6448–6454

    CAS  PubMed  Google Scholar 

  • Burrell LS, Lindblad EB, White JL, Hem SL (1999) Stability of aluminium-containing adjuvants to autoclaving. Vaccine 17:2599–2603

    CAS  PubMed  Google Scholar 

  • Butler NR, Voyce MA, Burland WL, Hilton ML (1969) Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus and pertussis vaccines for the immunization of infants. Br Med J 1:663–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlow CKS, Bianco AE (1987) Resistance of Onchocerca lienalis microfilariae in mice conferred by egg antigens of homologous and heterologous onchocerca species. Parasitology 94(3):485–496

    PubMed  Google Scholar 

  • Chafi AH, Hauw JJ, Rancurel G, Berry JP, Galle C (1991) Absence of aluminium in Alzheimer’s disease brain tissue: electron microprobe and ion microprobe studies. Neurosci Lett 123:61–64

    CAS  PubMed  Google Scholar 

  • Chang M, Shi Y, Nail SL, HogenEsch H, Adams SB, White JL, Hem SL (2001) Degree of antigen adsorption in the vaccine or interstitial fluid and its effect on the antibody response in rabbits. Vaccine 19(20–22):2884–2889

    CAS  PubMed  Google Scholar 

  • Church LD, Cook GP, McDermott MF (2008) Primer: inflammasomes and interleukin 1β in inflammatory disorders. Nat Clin Pract Rheumatol 4(1):34–42

    CAS  PubMed  Google Scholar 

  • Clausi AL, Merkley SA, Carpenter JF, Randolph TW (2008) Inhibition of aggregation of aluminum hydroxide adjuvant during freezing and drying. J Pharm Sci 97(6):2049–2061

    CAS  PubMed  Google Scholar 

  • Code of Federal Regulations 21, vol. 7: sec. 610.15 (Constituent Materials), revised April 1. 2003

    Google Scholar 

  • Collier LH, Polakoff S, Mortimer J (1979) Reactions and antibody responses to reinforcing doses of adsorbed and plain tetanus vaccines. Lancet 1(8131):1364–1368

    CAS  PubMed  Google Scholar 

  • Cooper PD, McComb C, Steele EJ (1991) The adjuvanticity of Algammulin, a new vaccine adjuvant. Vaccine 9(6):408–415

    CAS  PubMed  Google Scholar 

  • Cvjetanovic B, Uemura K (1965) The present status of field and laboratory studies of typhoid and paratyphoid vaccines. Bull WHO 32:29–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dagouassat N, Robillard V, Haeuw JF, Plotnicky-Gilquin H, Power UF, Corvaïa N, Nguyen T, Bonnefoy JY, Beck A (2001) A novel bipolar mode of attachment to aluminium-containing adjuvants by BBG2Na, a recombinant subunit hRSV vaccine. Vaccine 19:4143–4152

    CAS  PubMed  Google Scholar 

  • Davenport FM, Hennessy AV, Askin FB (1968) Lack of adjuvant effect of AlPO4 on purified influenza virus hemagglutinins in man. J Immunol 100(5):1139–1140

    CAS  PubMed  Google Scholar 

  • Dubischar-Kastner K, Kaltenboeck A, Klingler A, Jilma B, Schuller E (2010) Safety analysis of a Vero-cell culture derived Japanese encephalitis vaccine, IXIARO (IC51), in 6 months of follow-up. Vaccine 28(39):6463–6469

    CAS  PubMed  Google Scholar 

  • Edelman R (1980) Vaccine adjuvants. Rev Infect Dis 2(3):370–383

    CAS  PubMed  Google Scholar 

  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126

    CAS  PubMed  Google Scholar 

  • Ericsson H (1946) Purification and adsorption of diphtheria toxoid. Nature 158:350–351

    CAS  PubMed  Google Scholar 

  • Flarend RE, Hem SL, White JL, Elmore D, Suckow MA, Rudy AC, Dandashli EA (1997) In vivo absorption of aluminium containing vaccines using 26Al. Vaccine 15:1314–1318

    CAS  PubMed  Google Scholar 

  • Francis MJ, Fry CM, Rowlands DJ, Brown F, Bittle JL, Houghten RA, Lerner RA (1985) Immunological priming with synthetic peptides of foot-and-mouth disease virus. J Gen Vir 66:2347–2354

    CAS  Google Scholar 

  • Francis MJ, Fry CM, Rowlands DJ, Bittle JL, Houghten RA, Lerner RA, Brown F (1987) Immune response to uncoupled peptides of foot-and-mouth disease virus. Immunology 61:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frost L, Johansen P, Pedersen S, Veien N, Østergaard P, Nielsen M (1985) Persistent subcutaneous nodules in children hyposensitized with aluminium-containing allergen extracts. Allergy 40:368–372

    CAS  PubMed  Google Scholar 

  • Fujimaki H, Ozawa M, Imai T, Kubota K, Watanabe N (1984) Adjuvant effects of aluminium silicate on IgE and Ig G1 antibody production in mice. Int Arch Allergy Appl Immunol 75(4):351–356

    CAS  PubMed  Google Scholar 

  • Gamble HR, Murrell KD, Marti HP (1986) Inoculation of pigs against trichinella spiralis using larval excretory-secretory antigens. Am J Vet Res 47(11):2396–2399

    CAS  PubMed  Google Scholar 

  • Garcon N, van Mechelen M, Wettendorff M (2006) Development and evaluation of AS04, a novel and improved immunological adjuvant system containing MPL and aluminium salt. In: Schijns V, O’Hagan D (eds) Immunopotentiators in modern vaccines. Elsevier Academic Press, London, pp 161–177

    Google Scholar 

  • Geerligs HJ, Weijer WJ, Welling GW, Welling-Wester S (1989) The influence of different adjuvants on the immune response to a synthetic peptide comprising amino acid residues 9–21 of herpes simplex virus type 1. J Immunol Methods 124(1):95–102

    CAS  PubMed  Google Scholar 

  • Giannini SL, Hanon E, Moris P, Van Mechelen M, Morel S, Dessy F, Fourneau MA, Colau B, Suzich J, Losonksy G, Martin MT, Dubin G, Wettendorff MA (2006) Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24(33–34):5937–5949

    CAS  PubMed  Google Scholar 

  • Glenny AT, Pope CG, Waddington H, Wallace U (1926) Immunological notes XVII to XXIV.J Pathol 29:31–40

    CAS  Google Scholar 

  • Glenny AT, Buttle GAH, Stevens MF (1931) Rate of disappearance of diphtheria toxoid injected into rabbits and guinea-pigs: toxoid precipitated with alum. J Pathol 34:267–275

    CAS  Google Scholar 

  • Goldenthal KL, Cavagnaro JA, Alving C, Vogel FR (1993) Safety evaluation of vaccine adjuvants. AIDS Res Hum Retroviruses 9(suppl 1):s47–s51

    Google Scholar 

  • Goto N, Kato H, Maeyama J-I, Shibano M, Saito T, Yamaguchi J, Yoshihara S (1997) Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine 15:1364–1371

    CAS  PubMed  Google Scholar 

  • Grun JL, Maurer PH (1989) Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles. The role of endogenous interleukin-l in proliferative responses. Cell Immunol 121(1):134–145

    CAS  PubMed  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    CAS  PubMed  Google Scholar 

  • Hamaoka T, Katz DH, Bloch KJ, Benacerraf B (1973) Hapten-specific IgE antibody responses in mice. I. Secondary IgE response in irradiated recipients of syngeneic primed spleen cells. J Exp Med 138:306–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han JE, Kim HK, Park SA, Lee SJ, Kim HJ, Son GH, Kim YT, Cho YJ, Kim HJ, Lee NG (2010) A nontoxic derivative of lipopolysaccharide increases immune responses to Gardasil HPV vaccine in mice. Int Immunopharmacol 10(2):169–176

    CAS  PubMed  Google Scholar 

  • Hassett KJ, Cousins MC, Rabia LA, Chadwick CM, O’Hara JM, Nandi P, Brey RN, Mantis NJ, Carpenter JF, Randolph TW (2013) Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization. Eur J Pharm Biopharm 85(2):279–286, pii: S0939-6411(13)00118-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hem SL, HogenEsch H (2007) Aluminum-containing adjuvants: properties, formulation, and use. In: Singh M (ed) Vaccine adjuvants and delivery systems. Wiley, Hoboken, pp 81–114

    Google Scholar 

  • HogenEsch H (2013) Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol 3:1–13

    Google Scholar 

  • Holt LB (1947) Purified precipitated diphtheria toxoid of constant composition. Lancet 1:282–285

    CAS  PubMed  Google Scholar 

  • Holt LB (1950) Developments in diphtheria prophylaxis. Wm. Heinemann, London

    Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome via phagosomal destabilization. Nat Immunol 9(8):847–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hyslop NS, Morrow AW (1969) The influence of aluminium hydroxide content, dose volume and the inclusion of saponin on the efficacy of inactivated foot-and-mouth disease vaccines. Res Vet Sci 10(2):109–120

    CAS  PubMed  Google Scholar 

  • Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, Jenkins MK (2003) Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:47–57

    CAS  PubMed  Google Scholar 

  • Iyer S, HogenEsch H, Hem SL (2003) Effect of the degree of phosphate substitution in aluminium hydroxide adjuvant on the adsorption of phosphorylated proteins. Pharm Dev Technol 8:81–86

    CAS  PubMed  Google Scholar 

  • Iyer S, Robinett RSR, HogenEsch H, Hem SL (2004) Mechanism of adsorption of hepatitis B surface antigen by aluminium hydroxide adjuvant. Vaccine 22:1475–1479

    CAS  PubMed  Google Scholar 

  • Jankovic D, Caspar P, Zweig M, Garcia-Moll M, Showalter SD, Vogel FR, Sher A (1999) Adsorption to aluminium hydroxide promotes the activity of IL-12 as an adjuvant for antibody as well as type 1 cytokine responses to HIV-1 gp 120. J Immunol 163:4481–4488

    Google Scholar 

  • Jiang D, Morefield GL, HogenEsch H, Hem SL (2006) Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid. Vaccine 24(10):1665–1669

    CAS  PubMed  Google Scholar 

  • Kanra G, Viviani S, Yurdakök K, Ozmert E, Yalçin S, Baldini A, Mutlu B, Kara A, Ceyhan M, Podda A (1999) Safety, tolerability and immunogenicity of a Haemophilus influenzae type b vaccine containing aluminum phosphate adjuvant administered at 2, 3 and 4 months of age. Turk J Pediatr 41(4):421–427

    CAS  PubMed  Google Scholar 

  • Kanra G, Viviani S, Yurdakök K, Ozmert E, Anemona A, Yalçin S, Demiralp O, Bilgili N, Kara A, Cengiz AB, Mutlu B, Baldini A, Marchetti E, Podda A (2003) Effect of aluminum adjuvants on safety and immunogenicity of Haemophilus influenzae type b-CRM197 conjugate vaccine. Pediatr Int 45(3):314–318

    CAS  PubMed  Google Scholar 

  • Kartoglu U, Ozgüler NK, Wolfson LJ, Kurzatkowski W (2010) Validation of the shake test for detecting freeze damage to adsorbed vaccines. Bull WHO 88(8):624–631

    PubMed Central  PubMed  Google Scholar 

  • Kawamura Y, Sawai Y (1989a) Study on Indian cobra venom toxoid. The Snake 21:6–8

    CAS  Google Scholar 

  • Kawamura Y, Sawai Y (1989b) Study on the immunogenicity of purified toxoid of Siamese cobra (Naja Naja kaouthia) venom. Snake 21:81–84

    CAS  Google Scholar 

  • Keith LS, Jones DE, Chou CH (2002) Aluminum toxicokinetics regarding infant diet and vaccinations. Vaccine 20(Suppl 3):S13–S17

    CAS  PubMed  Google Scholar 

  • Kenney JS, Hughes BW, Masada MP, Allison AC (1989) Influence of adjuvants on the quantity, affinity, isotype and epitope specificity of murine antibodies. J Immunol Methods 121:157–166

    CAS  PubMed  Google Scholar 

  • Kool M, Pétrilli V, de Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181(6):3755–3759

    CAS  PubMed  Google Scholar 

  • Kurzatkowski W, Kartoglu U, Staniszewska M, Gorska P, Krause A, Wysocki MJ (2013) Structural damages in adsorbed vaccines affected by freezing. Biologicals 41:71–76

    CAS  PubMed  Google Scholar 

  • Kwissa M, Lindblad EB, Schirmbeck R, Reimann J (2003) Co-delivery of a DNA vaccine and a protein vaccine with aluminium phosphate stimulates a potent and multivalent immune response. J Mol Med 81(8):502–510

    CAS  PubMed  Google Scholar 

  • Landsberg JP, McDonald B, Watt F (1992) Absence of aluminium in neuritic plaque cores in Alzheimer’s disease. Nature 360:65–68

    CAS  PubMed  Google Scholar 

  • Landsberg J, McDonald B, Grime G, Watt F (1993) Microanalysis of senile plaques using nuclear microscopy. J Geriatr Psychiatry Neurol 6:97–104

    CAS  PubMed  Google Scholar 

  • Leland SE, Sofield WL, Minocha HC (1988) Immunogenic effects of culture-derived exoantigens of Cooperia punctata on calves before and after challenge exposure with infective larvae. Am J Vet Res 49(3):366–379

    PubMed  Google Scholar 

  • Lew AM, Anders RF, Edwards SJ, Langford CJ (1988) Comparison of antibody avidity and titer elicited by peptide as a protein conjugate or as expressed in vaccinia. Immunology 65(2):311–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J Immunol 178(8):5271–5726

    CAS  PubMed  Google Scholar 

  • Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lidholm AG, Bergfors E, Inerot A, Blomgren U, Gillstedt M, Trollfors B (2013) Unexpected loss of contact allergy to aluminium by vaccine. Contact Dermatitis 68(5):286–292

    CAS  Google Scholar 

  • Lindblad EB (2006) Are mineral adjuvants triggering TLR2/TLR4 on dendritic cells by a secondary cascade reaction in vivo through the action of heat shock proteins and danger signals? (Editorial Letter). Vaccine 24:697–698

    CAS  PubMed  Google Scholar 

  • Lindblad EB (2007) Safety evaluation of vaccine adjuvants (Chapter 18). In: Singh M (ed) Vaccine adjuvants and delivery systems. Wiley, Hoboken, pp 421–444

    Google Scholar 

  • Lindblad EB, Schønberg NE (2010) Aluminum adjuvants—preparation, application, dosage and formulation with antigen. In: Davies G (ed) Vaccine adjuvants. Methods in molecular biology. Humana, Totowa, pp 41–58

    Google Scholar 

  • Lindblad EB, Elhay MJ, Silva R, Appelberg R, Andersen P (1997) Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect Immun 65(2):623–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM (1985) Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol 61(1):143–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-β. Mol Cell 10(2):417–426

    CAS  PubMed  Google Scholar 

  • Martyn CN, Barker DJP, Osmond C, Harris EC, Edwardson JA, Lacey RF (1989) Geographical relation between Alzheimers disease and aluminium in drinking water. Lancet 1(8629):59–62

    CAS  PubMed  Google Scholar 

  • Maschmann E, Küster E, Fischer W (1931) Über die Fähigkeit des Tonerde-Präparates B, Diphtherie-Toxin zu adsorbieren. Ber Dtsch Chem Ges 64:2174–2178

    Google Scholar 

  • McCandlish IAP, Thompson H, Wright NG (1978) Vaccination against canine bordetellosis using an aluminium hydroxide adjuvant vaccine. Res Vet Sci 25:51–57

    CAS  PubMed  Google Scholar 

  • McDougall JS (1969) Avian infectious bronchitis: the protection afforded by an inactivated virus vaccine. Vet Rec 85:378–380

    CAS  PubMed  Google Scholar 

  • Mitkus RJ, King DB, Hess MA, Forshee RA, Walderhaug MO (2011) Updated aluminum pharmacokinetics following infant exposures through diet and vaccination. Vaccine 29(51):9538–9543

    CAS  PubMed  Google Scholar 

  • Monroy FG, Adams JH, Dobson C, Bast IJ (1989) Nematospiroides dubius: influence of adjuvants on immunity in mice vaccinated with antigens isolated by affinity chromatography from adult worms. Exp Parasitol 68(1):67–73

    CAS  PubMed  Google Scholar 

  • Morefield GL, Jiang D, Romero-Mendez IZ, Geahlen RL, Hogenesch H, Hem SL (2005) Effect of phosphorylation of ovalbumin on adsorption by aluminum-containing adjuvants and elution upon exposure to interstitial fluid. Vaccine 23(12):1502–1506

    CAS  PubMed  Google Scholar 

  • Nagy LK, Penn CW (1974) Protective antigens in bovine pasteurellosis. Dev Biol Stand 26:65–76

    Google Scholar 

  • Naim JO, van Oss CJ, Wu W, Giese RF, Nickerson PA (1997) Mechanisms of adjuvancy: I—metal oxides as adjuvants. Vaccine 15:1183–1193

    CAS  PubMed  Google Scholar 

  • Norimatsu M, Ogikubo Y, Aoki A, Takahashi T, Watanabe G, Taya K, Sasamoto S, Tsuchiya M, Tamura Y (1995) Effects of aluminium adjuvant on systemic reactions of lipopolysaccharides in swine. Vaccine 13(14):1325–1329

    CAS  PubMed  Google Scholar 

  • Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299

    CAS  PubMed  Google Scholar 

  • Ph. Eur. (1997) Vaccines for human use, 3rd edn. p 1697

    Google Scholar 

  • Pini A, Danskin D, Coackley W (1965) Comparative evaluation of the potency of beta-propiolactone inactivated Newcastle disease vaccines prepared from a lentogenic and a velogenic strain. Vet Rec 77(5):127–129

    CAS  PubMed  Google Scholar 

  • Poland GA, Jacobson RM (2001) The prevention of Lyme disease with vaccine. Vaccine 19:2303–2308

    CAS  PubMed  Google Scholar 

  • Pollock KGJ, Conacher M, Wei X-Q, Alexander J, Brewer JM (2003) Interleukin-18 plays a role in both the alum-induced T helper 2 response and the T helper 1 response induced by alum-adsorbed interleukin-12. Immunology 108:137–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rimaniol AC, Gras G, Verdier F, Capel F, Grigoriev VB, Porcheray F, Sauzeat E, Fournier JG, Clayette P, Siegrist CA, Dormont D (2004) Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine 22(23–24):3127–3135

    CAS  PubMed  Google Scholar 

  • Rinella JV, White JL, Hem SL (1995) Effect of anions on model aluminium-adjuvant-containing vaccines. J Colloid Interface Sci 172:121–130

    CAS  Google Scholar 

  • Rinella JV, White JL, Hem SL (1998a) Effect of pH on the elution of model antigens from aluminium-containing adjuvants. J Colloid Interface Sci 205:161–165

    CAS  PubMed  Google Scholar 

  • Rinella JV, Workman RF, Hermodson MA, White JL, Hem SL (1998b) Elutability of proteins from aluminium-containing vaccine adjuvants by treatment with surfactants. J Colloid Interface Sci 197:48–56

    CAS  PubMed  Google Scholar 

  • Ris DR, Hamel KL (1979) Leptospira interrogans serovar. pomona vaccines with different adjuvants in cattle. New Zealand Vet J 27:169–171

    CAS  Google Scholar 

  • Sagara T, Mori S, Ohkawara S, Goto F, Takagi K, Yoshinaga M (1990) A limited role of IL-1 in immune-enhancement by adjuvants. Immunology 71(2):251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seeber SJ, White JL, Hem SL (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9:201–203

    CAS  PubMed  Google Scholar 

  • Sellers RF, Herniman KAJ (1974) Early protection of pigs against foot-and-mouth disease. Br Vet J 130:440–445

    CAS  PubMed  Google Scholar 

  • Shi Y, HogenEsch H, Regnier FE, Hem SL (2001) Detoxification of endotoxin by aluminium hydroxide adjuvants. Vaccine 19:1747–1752

    CAS  PubMed  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521

    CAS  PubMed  Google Scholar 

  • Shirodkar S, Hutchinson RL, Perry DL, White JL, Hem SL (1990) Aluminium compounds used as adjuvants in vaccines. Pharm Res 7(12):1282–1288

    CAS  PubMed  Google Scholar 

  • Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29

    CAS  PubMed  Google Scholar 

  • Sokolovska A, Hem SL, HogenEsch H (2007) Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants. Vaccine 25(23):4575–4585

    CAS  PubMed  Google Scholar 

  • Sun H, Pollock KGJ, Brewer JM (2003) Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21:849–855

    CAS  PubMed  Google Scholar 

  • Technical Report Series 595 (1976) Immunological adjuvants. World Health Organization, Geneva

    Google Scholar 

  • Thorley CM, Egerton JR (1981) Comparison of alum-adsorbed or non-alum-adsorbed oil emulsion vaccines containing, either pilate or non-pilate bacteroides nodosus cells in inducing and maintaining resistance of sheep to experimental foot rot. Res Vet Sci 30:32–37

    CAS  PubMed  Google Scholar 

  • Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567–598

    CAS  PubMed  Google Scholar 

  • Uede T, Ishizaka K (1982) Formation of IgE binding factors by rat T lymphocytes. VI. Cellular mechanisms for the formation of IgE-potentiating factor and IgE-suppressive factor by antigenic stimulation of antigen primed spleen cells. J Immunol 129(4):1391–1397

    CAS  PubMed  Google Scholar 

  • Uede T, Huff TF, Ishizaka K (1982) Formation of IgE binding factors by Rat T lymphocytes. V. Effect of adjuvant for the priming immunization on the nature of IgE binding factors formed by antigenic stimulation. J Immunol 129(4):1384–1390

    CAS  PubMed  Google Scholar 

  • Ulanova M, Tarkowski A, Hahn-Zoric M, Hanson LA (2001) The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect Immun 69(2):1151–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmer JB, DeWitt CM, Chastain M, Friedman A, Donelly JJ, McClements WL, Caulfield MJ, Bohannon KE, Volkin DB, Evans RK (2000) Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine 18:18–28

    Google Scholar 

  • Verdier F, Burnett R, Michelet-Habchi C, Moretto P, Fievet-Groyne F, Sauzeat E (2005) Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminium containing vaccines in the Cynomolgus monkey. Vaccine 23(11):1359–1367

    CAS  PubMed  Google Scholar 

  • Vogelbruch M, Nuss B, Korner M, Kapp A, Kiehl P, Bohm W (2000) Aluminium-induced granulomas after inaccurate intradermal hyposensitization injections of aluminium-adsorbed depot preparations. Allergy 55(9):883–887

    CAS  PubMed  Google Scholar 

  • Volk VK, Bunney WE (1942) Diphtheria immunization with fluid toxoid and alum-precipitated toxoid. Am J Public Health 32:690–699

    CAS  Google Scholar 

  • Walls RS (1977) Eosinophil response to alum adjuvants: involvement of T-cells in non-antigen-dependent mechanisms. Proc Soc Exp Biol Med 156(3):431–435

    CAS  PubMed  Google Scholar 

  • White RG, Coons AH, Conolly JM (1955) Studies on antibody production: III. The alum granuloma. J Exp Med 102(1):73–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson JHG, Hermann-Dekkers WM, Leemans-Dessy S, de Meijer JW (1977) Experiments with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs. Vet Rec 100:552–554

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to dedicate this chapter to the memory of professor Stanley L. Hem (1940–2011), whose work was a source of inspiration to me for more than 25 years. I also thank Mrs. Jane Momsen for the artwork of the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Lindblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindblad, E.B. (2015). Aluminum Adjuvants: Basic Concepts and Progress in Understanding. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_3

Download citation