Skip to main content

Vaginal Delivery of Subunit Vaccines

  • Chapter
  • First Online:
Subunit Vaccine Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Subunit vaccines are designed to stimulate specific immunity against pathogens. The vagina has a rich vascular plexus and a large surface area due to the folds in the mucosa (rugae) making it ideal for absorbing drugs. Mucosal immune responses in the genital tract can be induced by the administration of antigen to distal or local mucosal surfaces. IgA antibodies in the vaginal tract are essential as a first-line defence against micro-organisms that enter the body via mucosal surfaces. Immune responses of various types stimulated by subunit vaccines administered vaginally have been investigated. Both vaginal and serum IgA and IgG levels have been enhanced following administration of subunit vaccines from various drug delivery systems. Studies comparing immunization at the female genital tract by delivering plasmid DNA intranasally, intrarectally and vaginally demonstrate that vaginal immunization induces better mucosal immunity. Professional antigen-presenting cells (e.g. dendritic cells), T-cells and B-cells populate the cervix and vagina of the human and murine female genital tract, indicating the potential for stimulation of mucosal immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov Y, Nadjari M, Weinstein D, Ben-Shachar I, Plotkin V, Ezra Y (2000) Indomethacin for oreterm labor: a randomized comparison of vaginal and rectal-oral routes. Obstet Gynecol 95(4):482–486

    Article  CAS  PubMed  Google Scholar 

  • Alexander NJ, Baker E, Kaptein M, Karck U, Miller L, Zampaglione E (2004) Why consider vaginal drug administration? Fertil Steril 82(1):1–12

    Article  PubMed  Google Scholar 

  • Antonio MA, Hawes SE, Hillier SL (1999) The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis 180(6):1950–1956

    Article  CAS  PubMed  Google Scholar 

  • Aroutcheva A, Simoes JA (2001) The inhibitory effect of clindamycin on Lactobacillus in vitro. Infect Dis Obstet Gynecol 9(4):239–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azizi A, Ghunaim H, Diaz-Mitoma F, Mestecky J (2010) Mucosal HIV vaccines: a holy grail or a dud? Vaccine 28:4015–4026

    Article  CAS  PubMed  Google Scholar 

  • Berman PW, Gregory TJ, Riddle L, Nakamura GR, Champe MA, Porter JP (1990) Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160. Nature 345:622–625

    Article  CAS  PubMed  Google Scholar 

  • Berman PW, Murthy KK, Wrin T, Vennari JC, Cobb EK, Eastman DJ (1996) Protection of MN-rgp120-immunized chimpanzees from heterologous infection with a primary isolate of human immunodeficiency virus type 1. J Infect Dis 173:52–59

    Article  CAS  PubMed  Google Scholar 

  • Bernstein DI (2000) Effect of route of vaccination with vaccinia virus expressing HSV-2 glycoprotein D on protection from genital HSV-2 infection. Vaccine 18:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HS, Tucker SP, Kar SR, McPherson SA, McPherson DT, Dubay JW, Lebowitz J, Compans RW, Hunter E (1995) Oligomerization of the hydrophobic heptad repeat of gp41. J Virol 69:2745–2750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brannon-Peppas L (1992) Novel vaginal drug release applications. Adv Drug Deliv Rev 11:169–177

    Article  Google Scholar 

  • Burgos MH, Roig de Varnas-Linares CE (1978) Ultrastructure of the vaginal mucosa. In: Hafez ESE, Evans TN (eds) The human vagina. Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Burton DR, Moore JP (1998) Why do we not have an HIV vaccine and how can we make one? Nat Med 4:495–498

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Cerutti A (2010) Vaccination strategies to promote mucosal antibody responses. Immunity 33:479–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chien Y (1982) Intravaginal controlled release drug administration Novel drug delivery systems. Marcel Dekker, New York

    Google Scholar 

  • Chung AW, Rollman E, Center RJ, Kent SJ, Stratov I (2009) Rapid degranulation of NK cells following activation by HIV-specific antibodies. J Immunol 182(2):1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Cicinelli E, deZiegler D (1999) Transvaginal progesterone: evidence for a new functional portal system flowing from the vagina to the uterus. Hum Reprod Update 5:365–372

    Article  CAS  PubMed  Google Scholar 

  • Cocchi F, DeVico AL, Garzino-DemoA ASK, Gallo RC, Lusso P (1995) Identification of RANTES MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 27(5243):1811–1815

    Article  Google Scholar 

  • Croughan WS, Behbehani AM (1988) Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents. J Clin Microbiol 26(2):213–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deschpande A (1992) Intravaginal drug delivery. Drug Dev Ind Pharm 18:1225–1279

    Article  Google Scholar 

  • Di Fabio S, Medaglini D (1998) Vaginal immunization of Cynomolgus monkeys with Streptococcus gordonii expressing HIV-1 and HPV 16 antigens. Vaccine 16(5):485–492

    Article  PubMed  Google Scholar 

  • Einer-Jensen N, Kotwica J (1993) Rapid absorption and local redistribution of progesterone after vaginal application in gifts. Acta Vet Scand 34(1):1–7

    CAS  PubMed  Google Scholar 

  • Foldvari M (1996) Effect of vehicle on topical liposomal drug delivery: petrolatum bases. J Microencapsul 13:589–600

    Article  CAS  PubMed  Google Scholar 

  • Fultz PN, Nara P, Barre-Sinoussi F, Chaput A, Greenberg ML, Muchmore E (1992) Vaccine protection of chimpanzees against challenge with HIV-1-infected peripheral blood mononuclear cells. Science 256:1687–1690

    Article  CAS  PubMed  Google Scholar 

  • Gilbert P, Wang M, Wrin T, Petropoulos C, Gurwith M, Sinangil F (2010) Magnitude and breadth of a nonprotective neutralizing antibody response in an efficacy trial of a candidate HIV-1 gp120 vaccine. J Infect Dis 202:595–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Girard M, Kieny MP, Pinter A, Barre-Sinoussi F, Nara P, Kolbe H (1991) Immunization of chimpanzees confers protection against challenge with human immunodeficiency virus. Proc Natl Acad Sci U S A 88:542–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham BS, McElrath MJ, Connor RI, Schwartz DH, Gorse GJ, Keefer MC (1998) Analysis of intercurrent human immunodeficiency virus type 1 infections in phase I and II trials of candidate AIDS vaccines. AIDS vaccine evaluation group, and the correlates of HIV immune protection group. J Infect Dis 177:310–319

    Article  CAS  PubMed  Google Scholar 

  • Graves S, Gotv T et al (1980) Effect of pH on the motility and virulence of Treponema pallidum (Nichols) and Treponema paraluis-cuniculi in vitro under anaerobic conditions. Br J Vener Dis 56(4):269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray H, Williams P (1995) Grays anatomy the anatomical basis of medicine and surgery. Churchill Livingstone, London

    Google Scholar 

  • Gupta PN, Pattani A, Curran R, Kett VL, Andrews GP, Morrow RJ, Woolfson AD, Malcolm RK (2012) Development of liposome gel based formulations for intravaginal delivery of the recombinant HIV-1 envelope protein CN54gp140. Eur J Pharm Sci 46:315–322

    Article  CAS  PubMed  Google Scholar 

  • Han IK, Kim YB (2006) Thermosensitive and mucoadhesive delivery systems of mucosal vaccines. Methods 38(2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Ahsan F (2005) The vagina as a route for systemic drug delivery. J Control Release 103(2):301–313

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Owada E (1976) Systems approach to vaginal delivery of drugs. II. In situ vaginal absorption of unbranched alipathatic alcohols. J Pharm Sci 65:1574–1578

    Article  CAS  PubMed  Google Scholar 

  • Johansson EL, Wassen L et al (2001) Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in human. Infect Immun 69(12):7481–7486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Junginger H, Verhoef J (1998) Macromolecules as safe penetration enhancers for hydrophilic drugs—a fiction? Pharm Sci Technol Today 1(9):370–376

    Article  CAS  Google Scholar 

  • Kato H, Bukawa H et al (2000) Rectal and vaginal immunization with a macromolecular multicomponent peptide vaccine candidate for HIV-1 infection induces HIV-specific preventive immune responses. Vaccine 18(13):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski PA, Cu-Uvin S (1999) Mucosal vaccination strategies for women. J Infect Dis 179(S3):S493–S498

    Article  PubMed  Google Scholar 

  • Kwant A, Rosenthal KL (2004) Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2. Vaccine 22(23–24):3098–3104

    Article  CAS  PubMed  Google Scholar 

  • Lang W (1995) Vaginal acidity and pH: a review. Obstet Gynecol Surv 10:546–560

    Article  Google Scholar 

  • Lee VHL (1988) Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst 5:69–98

    CAS  PubMed  Google Scholar 

  • Lehner T (2003) Innate and adaptive mucosal immunity in protection against HIV Infection. Vaccine 21(S2):S68–S76

    Article  PubMed  Google Scholar 

  • Lehner T, Hussain L, Wilson J, Chapman M (1991) Mucosal transmission of HIV. Nature 353(6346):709

    Article  CAS  PubMed  Google Scholar 

  • Lehner T, Tao L, Panagiotidi C, Klavinskis LS, Brookes R, Hussain L (1994) Mucosal model of genital immunization in male rhesus macaques with a recombinant simian immunodeficiency virus p27 antigen. J Virol 68(3):1624–1632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Letvin NL (1998) Progress in the development of an HIV-1 vaccine. Science 280:1875–1880

    Article  CAS  PubMed  Google Scholar 

  • Livingston J, Lu S (1998) Immunization of the female genital tract with a DNA-based vaccine. Infect Immun 66(1):322–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lofthouse S (2002) Immunological aspects of controlled antigen delivery. Adv Drug Deliv Rev 54(6):863–870

    Article  CAS  PubMed  Google Scholar 

  • Mardh P (1991) The vaginal ecosystem. Am J Obstet Gynecol 165(4):1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Mascola JR, Frankel SS, Broliden K (2000) HIV-1 entry at the mucosal surface: role of antibodies in protection. Science 14:S167–S174

    CAS  Google Scholar 

  • McClean HL, Reid M (1995) Healthy alliances? Other sexual health services and their views of genitourinary medicine. Genitourin Med 71(6):396–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDermott MR, Bienenstock J (1979) Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 122(5):1892–1898

    CAS  PubMed  Google Scholar 

  • McElrath MJ, Corey L, Greenberg PD, Matthews TJ, Montefiori DC, Rowen L (1996) Human immunodeficiency virus type 1 infection despite prior immunization with a recombinant envelope vaccine regimen. Proc Natl Acad Sci U S A 93:3972–3977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGhee JR, Yamamoto M et al (1992) Isotype of anti-SIV responses in infected rhesus macaques and in animals immunized by mucosal routes. AIDS Res Hum Retroviruses 8(8):1389

    CAS  PubMed  Google Scholar 

  • Medaglini D, Rush CM (1997) Commensal bacteria as vectors for mucosal vaccines against sexually transmitted diseases: vaginal colonization with recombinant streptococci induces local and systemic antibodies in mice. Vaccine 15(12–13):1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Nelson AL (2005) The vagina: new options for the administration of medications. http://www.medscape.com

  • O’Hagan D (1992) Oral delivery of vaccines. Formulation and clinical pharmacokinetic considerations. Clin Pharmacokinet 22(1):1–10

    Article  PubMed  Google Scholar 

  • Ogra PL, Ogra SS (1973) Local antibody response to poliovaccine in the human female genital tract. J Immunol 110(5):1307–1311

    CAS  PubMed  Google Scholar 

  • Owen DH, Katz DF (1999) A vaginal fluid stimulant. Contraception 59:91–95

    Article  CAS  PubMed  Google Scholar 

  • Owen DH, Peters JJ, Katz DF (2000) Rheological properties of contraceptive gels. Contraception 62:321–326

    Article  CAS  PubMed  Google Scholar 

  • Park J, Oh Y, Kang M, Kim C (2003) Enhanced mucosal and systemic immune responses following intravaginal immunization with human papillomavirus 16 L1 virus-like particle vaccine in thermosensitive mucoadhesive delivery systems. J Med Virol 70(4):633–641

    Article  PubMed  Google Scholar 

  • Parr MB, Parr EL (1991) Langerhans cells and T lymphocyte subsets in the murine vagina and cervix. Biol Reprod 44(3):491–498

    Article  CAS  PubMed  Google Scholar 

  • Parr EL, Parr MB (1999) Immune responses and protection against vaginal infection after nasal or vaginal immunization with attenuated herpes simplex virus type-2. Immunology 98(4):639–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavelic Z, Skalko-Basnet N, Schubert R (2001) Liposomal gels for vaginal drug delivery. Int J Pharm 219:139–149

    Article  CAS  PubMed  Google Scholar 

  • Pavelic Z, Skalko-Basnet N, Filipovic-Grcic J, Anita Martinac A, Jalsenjak I (2005) Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release 106:34–43

    Article  CAS  PubMed  Google Scholar 

  • Pettit RK, McAllister SC et al (1999) Response of gonococcal clinical isolates to acidic conditions. J Med Microbiol 48(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Phogat S, Svehia K, Tang M, Spadaccini A, Muller J, Mascola J, Berkower I, Wyatt R (2008) Analysis of the human immunodeficiency virus type 1 gp41 membrane proximal external arrayed on hepatitis B surface antigen particles. Virology 373(1):72–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson J, Illum L (1992) Routes of delivery case studies: the vaginal route of peptide and protein drug delivery. Adv Drug Deliv Rev 8:341–366

    Article  CAS  Google Scholar 

  • Ross RA, Lee MT (1995) Effect of Candida albicans infection and clotrimazole treatment on vaginal microflora in vitro. Obstet Gynaecol 86:925–930

    Article  CAS  Google Scholar 

  • Roy S, Sharma M et al (1994) A quantitative microbiological study of bacterial vaginosis. Indian J Med Res 100:172–176

    CAS  PubMed  Google Scholar 

  • Sanders J, Matthews H (1990) Vaginal absorption of polyvinyl alcohol in Fischer 344 rats. Hum Exp Toxicol 9:71–77

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Igarashi H (1990) Identification and localization of vpr gene product of human immunodeficiency virus type 1. Virus Genes 4:303–312

    Article  CAS  PubMed  Google Scholar 

  • Sher G, Fisch D (2002) Effect of vaginal sildenafil on the outcome of in vitro fertilization (IVF) after multiple IVF failures attributed to poor endometrial development. Fertil Steril 78(5):1073–1076

    Article  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–722

    Article  CAS  PubMed  Google Scholar 

  • Skalko N, Cajkovac M, Jalsenjak I (1998) Liposomes with metronidazole for topical use: the choice of preparation method and vehicle. J Liposome Res 8:283–293

    Article  CAS  Google Scholar 

  • Thompson I, Van der Bijl P (2001) A comparative light-microscopic, electron-microscopic and chemical study of human vaginal and buccal epithelium. Arch Oral Biol 46(12):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Tubin I, Novak J (1956) Integrated gynecology. McGraw-Hill, New York

    Google Scholar 

  • Wang B, Dang K, Agadjanyan MG, Srikantans V, Li F, Ugen KE, Boyer J, Merva M, Williams WV, Weiner DB (1997) Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site. Vaccine 15(8):821–825

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lee CH (2002) Characterization of a female controlled drug delivery system for microbicides. Contraception 66(4):281–287

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xiang Z (1998) Effect of passive immunization or maternally transferred immunity on the antibody response to a genetic vaccine to rabies virus. J Virol 72:1790–1796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wassen L, Jertborn M (2006) Influence of exogenous reproductive hormones on specific antibody production in genital secretions after vaginal vaccination with recombinant chlorea toxin B subunit in humans. Clinical and Vaccine Immunology 13(2):202–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams P, Warwick R (1989) Gray’s anatomy. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Woolfson A (2003) Intravaginal drug delivery technologies. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified release drug delivery technology. Marcel Dekker, New York, pp 759–774

    Google Scholar 

  • Woolfson A, Malcolm R (2000) Drug delivery by the intravaginal route. Crit Rev Ther Drug Carrier Syst 17:509–555

    Article  CAS  PubMed  Google Scholar 

  • Woolfson AD, Malcolm RK, Gallagher RJ (2003) Design of a silicone reservoir intravaginal ring for the delivery of oxybutynin. J Contr Rel 91(3): 465–476

    Article  CAS  Google Scholar 

  • Wu CY, Benet LZ (1995) Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 58(5):492–497

    Article  CAS  PubMed  Google Scholar 

  • Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 19:1884–1888

    Article  Google Scholar 

  • Zhang R, Li M, Chen C, Yao Q (2004) SHIV virus-like particles bind and activate human dendritic cells. Vaccine 23(2): 139–147

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Hidajat R, Peng B, Venzon D, Aldrich MK, Richardson E (2007) Comparative evaluation of oral and intranasal priming with replication-competent adenovirus 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinant vaccines on immunogenicity and protective efficacy against SIV(mac251). Vaccine 25:8021–8035

    Article  CAS  PubMed  Google Scholar 

  • Zieman M, Fong SK (1997) Absorption kinetics of misoprostol with oral or vaginal administration. Obstet Gynecol 90(1):88–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Damien Lowry for providing Fig. 17.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Lowry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lowry, D. (2015). Vaginal Delivery of Subunit Vaccines. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_17

Download citation

Publish with us

Policies and ethics