Skip to main content

Nasal Administration of Vaccines

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Nasal administration of vaccines is an interesting route of delivery as it targets one of the mucosal surfaces naturally being in contact with many airborne pathogens. For this reason, the nasal mucosa has a dense network of immunocompetent cells which can be utilised for vaccination. The nose has a reasonable inner surface area to allow uptake of a vaccine formulation and the nasal environment offers mild conditions compared to the gastro-intestinal tract minimising the risk of degradation for the subunit vaccine. Nasal application is non-invasive, painless and can be performed by the patient himself. In order to elicit local and systemic immune responses upon nasal administration, the antigen needs to be strongly immunogenic, which can be supported by choice of adjuvant and vaccine. This chapter gives a short overview of the nose as target for vaccine delivery and summarises formulation requirements. A range of examples for nasal subunit vaccine formulations being under evaluation are given before devices for nasal administration are addressed. Finally, important characterisation methods for nasal vaccines are presented.

Keywords

  • Nasal Cavity
  • Nasal Spray
  • Subunit Vaccine
  • Nasal Administration
  • Nasal Delivery

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_15
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2

References

  • Alpar HO, Somavarapu S, Atuah KN, Bramwell VW (2005) Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev 57:411–430

    CAS  PubMed  CrossRef  Google Scholar 

  • Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin D, Jiskoot W (2007) N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25:144–153

    CAS  PubMed  CrossRef  Google Scholar 

  • Amorij J-P, Meulenaar J, Hinrichs WLJ, Stegmann T, Huckriede A, Coenen F, Frijlink HW (2007) Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine 25:6447–6457

    CAS  PubMed  CrossRef  Google Scholar 

  • Arigita C, Bevaart L, Everse LA, Koning GA, Hennink WE, Crommelin D, van de Winkel JG, van Vugt MJ, Kersten GF, Jiskoot W (2003) Liposomal meningococcal B vaccination: role of dendritic cell targeting in the development of a protective immune response. Infect Immun 71(9):5210–5218

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bal SM, Slütter B, Verheul R, Bouwstra JA, Jiskoot W (2012) Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci 45:475–481

    CAS  PubMed  CrossRef  Google Scholar 

  • Baudner BC, Del Giudice G (2010) Determining the activity of mucosal adjuvants. In: Davies G (ed) Vaccine adjuvants. Springer Science + Business Media, LCC, New York, pp 261–285

    CrossRef  Google Scholar 

  • Bommer R (2006) Drug delivery: nasal route. In: Swabrick J (ed) Encyclopedia of pharmaceutical technology, vol 3. Informa Healthcare, New York, pp 1201–1208

    Google Scholar 

  • Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T (2007) Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J Control Release 121:168–175

    CAS  PubMed  CrossRef  Google Scholar 

  • Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, Junginger HE (2008) Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm 69(2):405–416

    CAS  PubMed  CrossRef  Google Scholar 

  • Brandau DT, Jones LS, Wiethoff CM, Rexroad J, Middaugh CR (2003) Thermal stability of vaccines. J Pharm Sci 92(2):218–231

    CAS  PubMed  CrossRef  Google Scholar 

  • Buske S, Scherließ R (2012) Dispersion behaviour of dry powder nanoparticle-in-microparticle formulations for nasal vaccine delivery. Paper presented at the 8th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, Istanbul

    Google Scholar 

  • Callens C, Ceulemans J, Ludwig A, Foreman P, Remon JP (2003) Rheological study on mucoadhesivity of some nasal powder formulations. Eur J Pharm Biopharm 55:323–328

    CAS  PubMed  CrossRef  Google Scholar 

  • Chadwick S, Kriegel C, Amiji MM (2009) Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther 9(4):427–440

    CAS  PubMed  CrossRef  Google Scholar 

  • Chadwick S, Kriegel C, Amiji MM (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62:394–407

    CAS  PubMed  CrossRef  Google Scholar 

  • Csaba N, Garcia-Fuentes M, Alonso MJ (2009) Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 61:140–157

    CAS  PubMed  CrossRef  Google Scholar 

  • Davis SS (2001) Nasal vaccines. Adv Drug Deliv Rev 51:21–42

    CAS  PubMed  CrossRef  Google Scholar 

  • De Magistris MT (2006) Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58:52–67

    PubMed  CrossRef  Google Scholar 

  • De Temmerman M-L, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 16(13/14):569–582

    PubMed  CrossRef  Google Scholar 

  • Debin A, Kravtzoff R, Santiago JV, Cazales L, Sperandio S, Melber K, Janowicz Z, Betbeder D, Moynier M (2002) Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine 20(21–22):2752–2763

    CAS  PubMed  CrossRef  Google Scholar 

  • Djupesland PG (2005) Breath-actuated bi-directional delivery sets the nasal market on a new course. OnDrugDelivery (3rd issue):20–23

    Google Scholar 

  • Duret C, Wauthoz N, Merlos R, Goole J, Maris C, Roland I, Sebti T, Vanderbist F, Amighi K (2012) In vitro and in vivo evaluation of a dry powder endotracheal insufflator device for use in dose-dependent preclinical studies in mice. Eur J Pharm Biopharm 81:627–634

    CAS  PubMed  CrossRef  Google Scholar 

  • FDA (2002) Guidance for industry: nasal spray and inhalation solution, suspension, and spray drug products—chemistry, maufacturing, and controls documentation. FDA, Rockville

    Google Scholar 

  • Garmise RJ, Hickey A (2009) Dry powder nasal vaccines as an alternative to needle-based delivery. Crit Rev Ther Drug Carrier Syst 26(1):1–27

    CAS  PubMed  CrossRef  Google Scholar 

  • Garmise RJ, Mar K, Crowder TM, Hwang CR, Ferriter M, Huang J, Mikszta JA, Sullivan VJ, Hickey AJ (2006) Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech 7(1):E1–E7

    CrossRef  Google Scholar 

  • Giroux M, Hwang P, Prasad A (2005) Controlled particle dispersion™: applying vortical flow to optimize nasal drug deposition. Drug Delivery Technol 5(3):44–49

    CAS  Google Scholar 

  • Gordon S, Saupe A, McBurney WT, Rades T, Hook S (2008) Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol 60:1591–1600

    CAS  PubMed  CrossRef  Google Scholar 

  • Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S (2010) In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 41:360–368

    CAS  PubMed  CrossRef  Google Scholar 

  • Guo Y, Laube B, Dalby R (2005) The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm Res 22:1871–1878

    CAS  PubMed  CrossRef  Google Scholar 

  • Haneberg B, Holst J (2002) Can nonliving nasal vaccines be made to work? Expert Rev Vaccines 1(2):227–232

    CAS  PubMed  CrossRef  Google Scholar 

  • Hanif J, Jawad SSM, Eccles R (2000) The nasal cycle in health and disease. Clin Otolaryngol 25:461–467

    CAS  PubMed  CrossRef  Google Scholar 

  • Hanif SNM, Garcia-Contreras L (2012) Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Front Cell Infect Microbiol 2(Article 118):1–11

    Google Scholar 

  • Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 24:252–269

    CrossRef  Google Scholar 

  • Harrison I (2013) Nasal dry powder delivery—device development & optimization. Paper presented at the Nasal and Buccal Drug Delivery Conference, London

    Google Scholar 

  • Hasija M, Li L, Rahman N, Ausar SF (2013) Forced degradation studies: an essential tool for the formulation development of vaccines. Vaccine 3:11–33

    CAS  Google Scholar 

  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A (2003) Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21:S2/89–S82/95

    CAS  CrossRef  Google Scholar 

  • Huang J, Garmise RJ, Crowder TM, Mar K, Hwang CR, Hickey AJ, Miksztaa JA, Sullivan VJ (2004) A novel dry powder influenza vaccine and intranasal delivery technology: induction of systemic and mucosal immune responses in rats. Vaccine 23:794–801

    CAS  PubMed  CrossRef  Google Scholar 

  • Hughes R, Watterson J, Dickens C, Ward D, Banaszek A (2008) Development of a nasal cast model to test medicinal nasal devices. Proc Inst Mech Eng H 222(7):1013–1022

    CAS  PubMed  CrossRef  Google Scholar 

  • Illum L (2012) Nasal drug delivery—recent developments and future prospects. J Control Release 161:254–263

    CAS  PubMed  CrossRef  Google Scholar 

  • Illum L, Iqbal K, Dodane V (2002) Chitosan technology to enhance the effectiveness of nasal drug delivery. Drug Development Delivery 2(2)

    Google Scholar 

  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96

    CAS  PubMed  CrossRef  Google Scholar 

  • Jabbal-Gill I (2010) Nasal vaccine innovation. J Drug Target 18(10):771–786

    CAS  PubMed  CrossRef  Google Scholar 

  • Jabbal-Gill I, Fisher AN, Rappuolit R, Davis SS, Illum L (1998) Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine 16(20):2039–2046

    CAS  PubMed  CrossRef  Google Scholar 

  • Jaganathan KS, Vyas SP (2006) Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 24(19):4201–4211

    CAS  PubMed  CrossRef  Google Scholar 

  • Janakova L, Bakke H, Haugen IL, Berstad AKH, Høiby EA, Aaberge IS, Haneberg B (2002) Influence of intravenous anesthesia on mucosal and systemic antibody responses to nasal vaccines. Infect Immun 70(10):5479–5484

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Jones N (2001) The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev 51:5–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaminski RF, Turbyfill KR, Oaks EV (2006) Mucosal adjuvant properties of the Shigella invasin complex. Infect Immun 74:2856–2866

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Kaye RS, Purewal TS, Alpar OH (2009) Development and testing of particulate formulations for the nasal delivery of antibodies. J Control Release 135:127–135

    CAS  PubMed  CrossRef  Google Scholar 

  • Keldmann T (2005) Advanced simplification of nasal delivery technology: anatomy+innovative device=added value opportunity. OnDrugDelivery (3rd issue):4–7

    Google Scholar 

  • Keldmann T (2006) Simplicity wins—from product conceptualisation to drug delivered. Drug Delivery Report (Spring/Summer):49–52

    Google Scholar 

  • Kelly JT, Asgharian B, Kimbell JS, Wong BA (2004) Particle deposition in human nasal airway replicas manufactured by different methods. part I: inertial regime particles. Aerosol Sci Tech 38(11):1063–1071

    CAS  CrossRef  Google Scholar 

  • Kippax P, Fracassi J (2003) Particle size characterisation in nasal sprays and aerosols. LabPlus Int (Feb/March)

    Google Scholar 

  • Koch M (2002) Drug delivery via the nose. Drug Delivery & Formulation:90–94

    Google Scholar 

  • Kojima N, Biao L, Nakayama T, Ishii M, Ikehara Y, Tsujimura K (2008) Oligomannose-coated liposomes as a therapeutic antigen-delivery and an adjuvant vehicle for induction of in vivo tumor immunity. J Control Release 129:26–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Lambkin R, Oxford JS, Bossuyt S, Mann A, Metcalfe IC, Herzog C, Viret J-F, Glück R (2004) Strong local and systemic protective immunity induced in the ferret model by an intranasal virosome-formulated influenza subunit vaccine. Vaccine 22:4390–4396

    CAS  PubMed  CrossRef  Google Scholar 

  • Lawson LB, Norton EB, Clements JD (2011) Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr Opin Immunol 23(3):414–420

    CAS  PubMed  CrossRef  Google Scholar 

  • Lehr C-M, Bouwstra JA, Schacht EH, Junginger HE (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48

    CAS  CrossRef  Google Scholar 

  • Li X, Sloat BR, Yanasarn N, Cui Z (2011) Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur J Pharm Biopharm 78:107–116

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Lycke N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 12:592–605

    CAS  PubMed  CrossRef  Google Scholar 

  • Marple B, Roland P, Benninger M (2004) Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg 130:131–141

    PubMed  CrossRef  Google Scholar 

  • Marx D, Leitz M, Fagot C (2011) Do we need new devices for intranasal vaccination? Drug Dev Delivery 11(3):54–59

    Google Scholar 

  • Marx D, Leitz M, Pfitzer K (2010) Intranasal vaccination. Inhalation 4(3):8–11

    Google Scholar 

  • McNeela EA, O’Connor D, Jabbal-Gill I, Illum L, Davis SS, Pizza M, Peppoloni S, Rappuoli R, Mills KHG (2001) A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine 19:1188–1198

    CrossRef  Google Scholar 

  • Merkus P, Romeijn SG, Verhoef JC, Merkus FWHM, Schouwenburg PF (2001) Classification of cilio-inhibiting effects of nasal drugs. Laryngoscope 111:595–602

    CAS  PubMed  CrossRef  Google Scholar 

  • Minne A, Boireau H, Horta MJ, Vanbever R (2008) Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients. Eur J Pharm Biopharm 70(3):839–844

    CAS  PubMed  CrossRef  Google Scholar 

  • Mygind N, Dahl R (1998) Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev 29:3–12

    CAS  PubMed  CrossRef  Google Scholar 

  • Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148–158

    CAS  PubMed  CrossRef  Google Scholar 

  • Newman SP, Pitcairn GP, Dalby RN (2004) Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit Rev Ther Drug Carrier Syst 21:21–66

    PubMed  CrossRef  Google Scholar 

  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2012) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235. doi:10.1039/c2cs35265f

    CrossRef  Google Scholar 

  • Nochi T, Yuki Y, Takahashi H, Sawada S-I, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578

    CAS  PubMed  CrossRef  Google Scholar 

  • Pavot V, Rochereau N, Genin C, Verrier B, Paul S (2012) New insights in mucosal vaccine development. Vaccine 30:142–154

    CAS  PubMed  CrossRef  Google Scholar 

  • Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 364:272–280

    CAS  PubMed  CrossRef  Google Scholar 

  • Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VGJ, Lo DD (2010) Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 285(31):23739–23746

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Raula J, Thielmann F, Naderi M, Lehto V-P, Kauppinen EI (2010) Investigations on particle surface characteristics vs. dispersion behaviour of l-leucine coated carrier-free inhalable powders. Int J Pharm 385:79–85

    CAS  PubMed  CrossRef  Google Scholar 

  • Riddle, M.S., Robert W. Kaminski, Carlos Williams, Chad Porter, Shahida Baqar, Alexis Kordis, Theron Gilliland, Joyce Lapa, Melissa Coughlin, Chris Soltis, Erica Jones, Jackie Saunders, Paul B. Keiser, Ryan T. Ranallo, Robert Gormley, Michael Nelson, K. Ross Turbyfill, David Tribble and Edwin V. Oaks (2011) Safety and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine. Vaccine 29:7009–7019

    Google Scholar 

  • Ribeiro CMS, Schijns VEJC (2010) Immunology of vaccine adjuvants. In: Davies G (ed) Vaccine adjuvants. Methods in molecular biology, vol 626. Springer Science+Business Media LCC, New York, pp 1–14

    CrossRef  Google Scholar 

  • Righton L, Harrison L (2013) Moving toward patient-preferred nasal drug delivery systems. OnDrugDelivery (April):4–7

    Google Scholar 

  • Saraf S, Mishra D, Asthana A, Jain R, Singh S, Jain NK (2006) Lipid microparticles for mucosal immunization against hepatitis B. Vaccine 24(1):45–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Scherließ R (2010) Comparison of in vitro methods to determine nasal versus lung deposition of a protein formulation. Paper presented at the DDL 21, Edinburgh

    Google Scholar 

  • Scherließ R (2011a) In vitro evaluation of dry powder nasal deposition from a single use nasal device. Paper presented at the DDL 22, Edinburgh

    Google Scholar 

  • Scherließ R (2011b) In vitro particle deposition in the nasal cavity. Inhalation 5(3):14–18

    Google Scholar 

  • Scherließ R, Buske S (2012) Dry powder nanoparticulate formulations for mucosal vaccination. In: Tiddy G, Tan RB (eds) Nanoformulation. RSC, Singapore, pp 104–112

    CrossRef  Google Scholar 

  • Scherließ R, Trows S (2011a) Characterization of nasal deposition and post-nasal fraction of a model vaccine protein formulation. In: Dalby RN (ed) Respiratory drug delivery Europe 2011, vol 2. Davies Healthcare International, Paris, pp 321–325

    Google Scholar 

  • Scherließ R, Trows S (2011b) Novel formulation concept for particulate uptake of vaccines via the nasal associated lymphoid tissue. Procedia Vaccinol 4:113–119

    CrossRef  Google Scholar 

  • Scherließ R, Trows S, Buske S (2013) Overcoming challenges in development of nasal vaccines through intelligent particle engineering. Inhalation 6:8–14

    Google Scholar 

  • Schönbrodt T, Egen M, Heyder K, Kohler D, Kranz Y, Müller C, Schiewe J (2010) Method development for deposition studies in a nasal cast. In: Dalby RN (ed) Respiratory drug delivery 2010, vol 2. Davies Healthcare International, Orlando, pp 445–449

    Google Scholar 

  • Singh J, Pandit S, Bramwell VW, Alpar HO (2006) Diphtheria toxoid loaded poly-(E-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods 38:96–105

    CAS  PubMed  CrossRef  Google Scholar 

  • Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, Bouwstra J, Broere F, Jiskoot W (2010a) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28:6282–6291

    PubMed  CrossRef  Google Scholar 

  • Slütter B, Bal SM, Que I, Kaijzel E, Löwik C, Bouwstra J, Jiskoot W (2010b) Antigen-adjuvant nanoconjugates for nasal vaccination: an improvement over the use of nanoparticles? Mol Pharm 7(6):2207–2215

    PubMed  CrossRef  Google Scholar 

  • Soane RJ, Hinchcliffe M, Davis SS, Illum L (2001) Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm 217(1–2):183–191

    CAS  PubMed  CrossRef  Google Scholar 

  • Sullivan T (2011) Novel advances in rapid manufacturing, development, and delivery of intranasally administered drugs and biologics. OnDrugDelivery April:31–34

    Google Scholar 

  • Sullivan T, Taraporewala I, Zielinski W (2009) Innovations in intranasal vaccine delivery technology. BioPharm International Supplements (October):1–5

    Google Scholar 

  • Suman J (2009) In vitro nasal spray characterisation. Inhalation (June) 1–4

    Google Scholar 

  • Swift DL (1981) Aerosol deposition and clearance in the human upper airways. Ann Biomed Eng 9:593–604

    CAS  PubMed  CrossRef  Google Scholar 

  • Tafaghodi M, Rastegar S (2010) Preparations and in vitro study of dry powder microspheres for nasal immunization. J Drug Target 18(3):235–242

    CAS  PubMed  CrossRef  Google Scholar 

  • Tafaghodi M, Tabassi SAS, Jaafaria M-R, Zakavid SR, Momen-Nejad M (2004) Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int J Pharm 280(1–2):125–135

    CAS  PubMed  CrossRef  Google Scholar 

  • Taneja S, Ahmad F (1994) Increased thermal stability of proteins in the presence of amino acids. Biochem J 303:147–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tribble D, Kaminski R, Cantrell J, Nelson M, Porter C, Baqar S, Williams C, Arora R, Saunders J, Ananthakrishnan M, Sanders J, Zaucha G, Turbyfill R, Oaks E (2010) Safety and immunogenicity of a Shigella flexneri 2a Invaplex 50 intranasal vaccine in adult volunteers. Vaccine 28:6076–6085

    CAS  PubMed  CrossRef  Google Scholar 

  • Trows S, Scherließ R (2012a) Preparation and characterization of dry powder agarose nano-in-microparticles for nasal vaccination. In: Dalby RN (ed) Respiratory drug delivery 2012, vol 2. Davies Healthcare International, Phoenix, pp. 491–496

    Google Scholar 

  • Trows S, Scherließ R (2012b) Stability of antigen loaded dry powder microparticles for nasal vaccination. Paper presented at the 8th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, Istanbul

    Google Scholar 

  • Turker S, Onur E, Ozer Y (2004) Nasal route and drug delivery systems. Pharm World Sci 26(3):137–142

    PubMed  CrossRef  Google Scholar 

  • van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21:1400–1408

    PubMed  CrossRef  Google Scholar 

  • Vodak DT, Dobry DE, Falk R, Dubose D, Kuehl PJ, Chand R, Foubert TR, Steadman BL (2012) Enhancing the immune response to intranasal vaccination with norovirus VLPs—size matters. Paper presented at the DDL 23, Edinburgh

    Google Scholar 

  • Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ (2012) Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci 101(1):31–47

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Washington N, Steele RJC, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA (2000) Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm 198:139–146

    CAS  PubMed  CrossRef  Google Scholar 

  • Weiler C, Egen M, Trunk M, Langguth P (2010) Force control and powder dispersibility of spray dried particles for inhalation. J Pharm Sci 99(1):303–316

    CAS  PubMed  CrossRef  Google Scholar 

  • Westmeier R (2010) Novel formulation concept for nasal deposition of dry powder vaccines. In: Dalby RN (ed) Respiratory drug delivery 2010, vol 2. Davies Healthcare International, Orlando, pp 523–527

    Google Scholar 

  • Westmeier R, Steckel H (2008) In-situ fine particle excipient as dispersion modifier for a dry powder inhalation product. Paper presented at the DDL 19, Edinburgh

    Google Scholar 

  • White KL, Rades T, Furneaux RH, Tyer PC, Hook S (2006) Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol 58(6):729–737

    CAS  PubMed  CrossRef  Google Scholar 

  • Wolfe T, Denton M (2012) Intranasal vaccine delivery—a promising future. OnDrugDelivery:10–12

    Google Scholar 

  • Wu Y, Wu S, Hou L, Wei W, Zhou M, Su Z, Wu J, Chen W, Ma G (2012) Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur J Pharm Biopharm 81:486–497

    CAS  PubMed  CrossRef  Google Scholar 

  • Yuki Y, Nochi T, Harada N, Katakai Y, Shibata H, Mejima M, Kohda T, Tokuhara D, Kurokawa S, Takahashi Y, Ono F, Kozaki S, Terao K, Tsukada H, Kiyono H (2010) In vivo molecular imaging analysis of a nasal vaccine that induces protective immunity against Botulism in nonhuman primates. J Immunol 185:5436–5443

    CAS  PubMed  CrossRef  Google Scholar 

  • Zscherpe J (2009) Nasale Pulverformulierungen zur systemischen Wirkstoffapplikation. Kiel University, Kiel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Scherließ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scherließ, R. (2015). Nasal Administration of Vaccines. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_15

Download citation