Alpar HO, Somavarapu S, Atuah KN, Bramwell VW (2005) Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev 57:411–430
CAS
PubMed
CrossRef
Google Scholar
Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin D, Jiskoot W (2007) N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25:144–153
CAS
PubMed
CrossRef
Google Scholar
Amorij J-P, Meulenaar J, Hinrichs WLJ, Stegmann T, Huckriede A, Coenen F, Frijlink HW (2007) Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine 25:6447–6457
CAS
PubMed
CrossRef
Google Scholar
Arigita C, Bevaart L, Everse LA, Koning GA, Hennink WE, Crommelin D, van de Winkel JG, van Vugt MJ, Kersten GF, Jiskoot W (2003) Liposomal meningococcal B vaccination: role of dendritic cell targeting in the development of a protective immune response. Infect Immun 71(9):5210–5218
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Bal SM, Slütter B, Verheul R, Bouwstra JA, Jiskoot W (2012) Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci 45:475–481
CAS
PubMed
CrossRef
Google Scholar
Baudner BC, Del Giudice G (2010) Determining the activity of mucosal adjuvants. In: Davies G (ed) Vaccine adjuvants. Springer Science + Business Media, LCC, New York, pp 261–285
CrossRef
Google Scholar
Bommer R (2006) Drug delivery: nasal route. In: Swabrick J (ed) Encyclopedia of pharmaceutical technology, vol 3. Informa Healthcare, New York, pp 1201–1208
Google Scholar
Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T (2007) Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J Control Release 121:168–175
CAS
PubMed
CrossRef
Google Scholar
Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, Junginger HE (2008) Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm 69(2):405–416
CAS
PubMed
CrossRef
Google Scholar
Brandau DT, Jones LS, Wiethoff CM, Rexroad J, Middaugh CR (2003) Thermal stability of vaccines. J Pharm Sci 92(2):218–231
CAS
PubMed
CrossRef
Google Scholar
Buske S, Scherließ R (2012) Dispersion behaviour of dry powder nanoparticle-in-microparticle formulations for nasal vaccine delivery. Paper presented at the 8th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, Istanbul
Google Scholar
Callens C, Ceulemans J, Ludwig A, Foreman P, Remon JP (2003) Rheological study on mucoadhesivity of some nasal powder formulations. Eur J Pharm Biopharm 55:323–328
CAS
PubMed
CrossRef
Google Scholar
Chadwick S, Kriegel C, Amiji MM (2009) Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther 9(4):427–440
CAS
PubMed
CrossRef
Google Scholar
Chadwick S, Kriegel C, Amiji MM (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62:394–407
CAS
PubMed
CrossRef
Google Scholar
Csaba N, Garcia-Fuentes M, Alonso MJ (2009) Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 61:140–157
CAS
PubMed
CrossRef
Google Scholar
Davis SS (2001) Nasal vaccines. Adv Drug Deliv Rev 51:21–42
CAS
PubMed
CrossRef
Google Scholar
De Magistris MT (2006) Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58:52–67
PubMed
CrossRef
Google Scholar
De Temmerman M-L, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 16(13/14):569–582
PubMed
CrossRef
Google Scholar
Debin A, Kravtzoff R, Santiago JV, Cazales L, Sperandio S, Melber K, Janowicz Z, Betbeder D, Moynier M (2002) Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine 20(21–22):2752–2763
CAS
PubMed
CrossRef
Google Scholar
Djupesland PG (2005) Breath-actuated bi-directional delivery sets the nasal market on a new course. OnDrugDelivery (3rd issue):20–23
Google Scholar
Duret C, Wauthoz N, Merlos R, Goole J, Maris C, Roland I, Sebti T, Vanderbist F, Amighi K (2012) In vitro and in vivo evaluation of a dry powder endotracheal insufflator device for use in dose-dependent preclinical studies in mice. Eur J Pharm Biopharm 81:627–634
CAS
PubMed
CrossRef
Google Scholar
FDA (2002) Guidance for industry: nasal spray and inhalation solution, suspension, and spray drug products—chemistry, maufacturing, and controls documentation. FDA, Rockville
Google Scholar
Garmise RJ, Hickey A (2009) Dry powder nasal vaccines as an alternative to needle-based delivery. Crit Rev Ther Drug Carrier Syst 26(1):1–27
CAS
PubMed
CrossRef
Google Scholar
Garmise RJ, Mar K, Crowder TM, Hwang CR, Ferriter M, Huang J, Mikszta JA, Sullivan VJ, Hickey AJ (2006) Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech 7(1):E1–E7
CrossRef
Google Scholar
Giroux M, Hwang P, Prasad A (2005) Controlled particle dispersion™: applying vortical flow to optimize nasal drug deposition. Drug Delivery Technol 5(3):44–49
CAS
Google Scholar
Gordon S, Saupe A, McBurney WT, Rades T, Hook S (2008) Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol 60:1591–1600
CAS
PubMed
CrossRef
Google Scholar
Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S (2010) In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 41:360–368
CAS
PubMed
CrossRef
Google Scholar
Guo Y, Laube B, Dalby R (2005) The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm Res 22:1871–1878
CAS
PubMed
CrossRef
Google Scholar
Haneberg B, Holst J (2002) Can nonliving nasal vaccines be made to work? Expert Rev Vaccines 1(2):227–232
CAS
PubMed
CrossRef
Google Scholar
Hanif J, Jawad SSM, Eccles R (2000) The nasal cycle in health and disease. Clin Otolaryngol 25:461–467
CAS
PubMed
CrossRef
Google Scholar
Hanif SNM, Garcia-Contreras L (2012) Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Front Cell Infect Microbiol 2(Article 118):1–11
Google Scholar
Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 24:252–269
CrossRef
Google Scholar
Harrison I (2013) Nasal dry powder delivery—device development & optimization. Paper presented at the Nasal and Buccal Drug Delivery Conference, London
Google Scholar
Hasija M, Li L, Rahman N, Ausar SF (2013) Forced degradation studies: an essential tool for the formulation development of vaccines. Vaccine 3:11–33
CAS
Google Scholar
Holmgren J, Czerkinsky C, Eriksson K, Mharandi A (2003) Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21:S2/89–S82/95
CAS
CrossRef
Google Scholar
Huang J, Garmise RJ, Crowder TM, Mar K, Hwang CR, Hickey AJ, Miksztaa JA, Sullivan VJ (2004) A novel dry powder influenza vaccine and intranasal delivery technology: induction of systemic and mucosal immune responses in rats. Vaccine 23:794–801
CAS
PubMed
CrossRef
Google Scholar
Hughes R, Watterson J, Dickens C, Ward D, Banaszek A (2008) Development of a nasal cast model to test medicinal nasal devices. Proc Inst Mech Eng H 222(7):1013–1022
CAS
PubMed
CrossRef
Google Scholar
Illum L (2012) Nasal drug delivery—recent developments and future prospects. J Control Release 161:254–263
CAS
PubMed
CrossRef
Google Scholar
Illum L, Iqbal K, Dodane V (2002) Chitosan technology to enhance the effectiveness of nasal drug delivery. Drug Development Delivery 2(2)
Google Scholar
Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96
CAS
PubMed
CrossRef
Google Scholar
Jabbal-Gill I (2010) Nasal vaccine innovation. J Drug Target 18(10):771–786
CAS
PubMed
CrossRef
Google Scholar
Jabbal-Gill I, Fisher AN, Rappuolit R, Davis SS, Illum L (1998) Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine 16(20):2039–2046
CAS
PubMed
CrossRef
Google Scholar
Jaganathan KS, Vyas SP (2006) Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 24(19):4201–4211
CAS
PubMed
CrossRef
Google Scholar
Janakova L, Bakke H, Haugen IL, Berstad AKH, Høiby EA, Aaberge IS, Haneberg B (2002) Influence of intravenous anesthesia on mucosal and systemic antibody responses to nasal vaccines. Infect Immun 70(10):5479–5484
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Jones N (2001) The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev 51:5–19
CAS
PubMed
CrossRef
Google Scholar
Kaminski RF, Turbyfill KR, Oaks EV (2006) Mucosal adjuvant properties of the Shigella invasin complex. Infect Immun 74:2856–2866
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Kaye RS, Purewal TS, Alpar OH (2009) Development and testing of particulate formulations for the nasal delivery of antibodies. J Control Release 135:127–135
CAS
PubMed
CrossRef
Google Scholar
Keldmann T (2005) Advanced simplification of nasal delivery technology: anatomy+innovative device=added value opportunity. OnDrugDelivery (3rd issue):4–7
Google Scholar
Keldmann T (2006) Simplicity wins—from product conceptualisation to drug delivered. Drug Delivery Report (Spring/Summer):49–52
Google Scholar
Kelly JT, Asgharian B, Kimbell JS, Wong BA (2004) Particle deposition in human nasal airway replicas manufactured by different methods. part I: inertial regime particles. Aerosol Sci Tech 38(11):1063–1071
CAS
CrossRef
Google Scholar
Kippax P, Fracassi J (2003) Particle size characterisation in nasal sprays and aerosols. LabPlus Int (Feb/March)
Google Scholar
Koch M (2002) Drug delivery via the nose. Drug Delivery & Formulation:90–94
Google Scholar
Kojima N, Biao L, Nakayama T, Ishii M, Ikehara Y, Tsujimura K (2008) Oligomannose-coated liposomes as a therapeutic antigen-delivery and an adjuvant vehicle for induction of in vivo tumor immunity. J Control Release 129:26–32
CAS
PubMed
CrossRef
Google Scholar
Lambkin R, Oxford JS, Bossuyt S, Mann A, Metcalfe IC, Herzog C, Viret J-F, Glück R (2004) Strong local and systemic protective immunity induced in the ferret model by an intranasal virosome-formulated influenza subunit vaccine. Vaccine 22:4390–4396
CAS
PubMed
CrossRef
Google Scholar
Lawson LB, Norton EB, Clements JD (2011) Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr Opin Immunol 23(3):414–420
CAS
PubMed
CrossRef
Google Scholar
Lehr C-M, Bouwstra JA, Schacht EH, Junginger HE (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48
CAS
CrossRef
Google Scholar
Li X, Sloat BR, Yanasarn N, Cui Z (2011) Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur J Pharm Biopharm 78:107–116
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Lycke N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 12:592–605
CAS
PubMed
CrossRef
Google Scholar
Marple B, Roland P, Benninger M (2004) Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg 130:131–141
PubMed
CrossRef
Google Scholar
Marx D, Leitz M, Fagot C (2011) Do we need new devices for intranasal vaccination? Drug Dev Delivery 11(3):54–59
Google Scholar
Marx D, Leitz M, Pfitzer K (2010) Intranasal vaccination. Inhalation 4(3):8–11
Google Scholar
McNeela EA, O’Connor D, Jabbal-Gill I, Illum L, Davis SS, Pizza M, Peppoloni S, Rappuoli R, Mills KHG (2001) A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine 19:1188–1198
CrossRef
Google Scholar
Merkus P, Romeijn SG, Verhoef JC, Merkus FWHM, Schouwenburg PF (2001) Classification of cilio-inhibiting effects of nasal drugs. Laryngoscope 111:595–602
CAS
PubMed
CrossRef
Google Scholar
Minne A, Boireau H, Horta MJ, Vanbever R (2008) Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients. Eur J Pharm Biopharm 70(3):839–844
CAS
PubMed
CrossRef
Google Scholar
Mygind N, Dahl R (1998) Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev 29:3–12
CAS
PubMed
CrossRef
Google Scholar
Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148–158
CAS
PubMed
CrossRef
Google Scholar
Newman SP, Pitcairn GP, Dalby RN (2004) Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit Rev Ther Drug Carrier Syst 21:21–66
PubMed
CrossRef
Google Scholar
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2012) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235. doi:10.1039/c2cs35265f
CrossRef
Google Scholar
Nochi T, Yuki Y, Takahashi H, Sawada S-I, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578
CAS
PubMed
CrossRef
Google Scholar
Pavot V, Rochereau N, Genin C, Verrier B, Paul S (2012) New insights in mucosal vaccine development. Vaccine 30:142–154
CAS
PubMed
CrossRef
Google Scholar
Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 364:272–280
CAS
PubMed
CrossRef
Google Scholar
Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VGJ, Lo DD (2010) Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 285(31):23739–23746
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Raula J, Thielmann F, Naderi M, Lehto V-P, Kauppinen EI (2010) Investigations on particle surface characteristics vs. dispersion behaviour of l-leucine coated carrier-free inhalable powders. Int J Pharm 385:79–85
CAS
PubMed
CrossRef
Google Scholar
Riddle, M.S., Robert W. Kaminski, Carlos Williams, Chad Porter, Shahida Baqar, Alexis Kordis, Theron Gilliland, Joyce Lapa, Melissa Coughlin, Chris Soltis, Erica Jones, Jackie Saunders, Paul B. Keiser, Ryan T. Ranallo, Robert Gormley, Michael Nelson, K. Ross Turbyfill, David Tribble and Edwin V. Oaks (2011) Safety and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine. Vaccine 29:7009–7019
Google Scholar
Ribeiro CMS, Schijns VEJC (2010) Immunology of vaccine adjuvants. In: Davies G (ed) Vaccine adjuvants. Methods in molecular biology, vol 626. Springer Science+Business Media LCC, New York, pp 1–14
CrossRef
Google Scholar
Righton L, Harrison L (2013) Moving toward patient-preferred nasal drug delivery systems. OnDrugDelivery (April):4–7
Google Scholar
Saraf S, Mishra D, Asthana A, Jain R, Singh S, Jain NK (2006) Lipid microparticles for mucosal immunization against hepatitis B. Vaccine 24(1):45–56
CAS
PubMed
CrossRef
Google Scholar
Scherließ R (2010) Comparison of in vitro methods to determine nasal versus lung deposition of a protein formulation. Paper presented at the DDL 21, Edinburgh
Google Scholar
Scherließ R (2011a) In vitro evaluation of dry powder nasal deposition from a single use nasal device. Paper presented at the DDL 22, Edinburgh
Google Scholar
Scherließ R (2011b) In vitro particle deposition in the nasal cavity. Inhalation 5(3):14–18
Google Scholar
Scherließ R, Buske S (2012) Dry powder nanoparticulate formulations for mucosal vaccination. In: Tiddy G, Tan RB (eds) Nanoformulation. RSC, Singapore, pp 104–112
CrossRef
Google Scholar
Scherließ R, Trows S (2011a) Characterization of nasal deposition and post-nasal fraction of a model vaccine protein formulation. In: Dalby RN (ed) Respiratory drug delivery Europe 2011, vol 2. Davies Healthcare International, Paris, pp 321–325
Google Scholar
Scherließ R, Trows S (2011b) Novel formulation concept for particulate uptake of vaccines via the nasal associated lymphoid tissue. Procedia Vaccinol 4:113–119
CrossRef
Google Scholar
Scherließ R, Trows S, Buske S (2013) Overcoming challenges in development of nasal vaccines through intelligent particle engineering. Inhalation 6:8–14
Google Scholar
Schönbrodt T, Egen M, Heyder K, Kohler D, Kranz Y, Müller C, Schiewe J (2010) Method development for deposition studies in a nasal cast. In: Dalby RN (ed) Respiratory drug delivery 2010, vol 2. Davies Healthcare International, Orlando, pp 445–449
Google Scholar
Singh J, Pandit S, Bramwell VW, Alpar HO (2006) Diphtheria toxoid loaded poly-(E-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods 38:96–105
CAS
PubMed
CrossRef
Google Scholar
Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, Bouwstra J, Broere F, Jiskoot W (2010a) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28:6282–6291
PubMed
CrossRef
Google Scholar
Slütter B, Bal SM, Que I, Kaijzel E, Löwik C, Bouwstra J, Jiskoot W (2010b) Antigen-adjuvant nanoconjugates for nasal vaccination: an improvement over the use of nanoparticles? Mol Pharm 7(6):2207–2215
PubMed
CrossRef
Google Scholar
Soane RJ, Hinchcliffe M, Davis SS, Illum L (2001) Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm 217(1–2):183–191
CAS
PubMed
CrossRef
Google Scholar
Sullivan T (2011) Novel advances in rapid manufacturing, development, and delivery of intranasally administered drugs and biologics. OnDrugDelivery April:31–34
Google Scholar
Sullivan T, Taraporewala I, Zielinski W (2009) Innovations in intranasal vaccine delivery technology. BioPharm International Supplements (October):1–5
Google Scholar
Suman J (2009) In vitro nasal spray characterisation. Inhalation (June) 1–4
Google Scholar
Swift DL (1981) Aerosol deposition and clearance in the human upper airways. Ann Biomed Eng 9:593–604
CAS
PubMed
CrossRef
Google Scholar
Tafaghodi M, Rastegar S (2010) Preparations and in vitro study of dry powder microspheres for nasal immunization. J Drug Target 18(3):235–242
CAS
PubMed
CrossRef
Google Scholar
Tafaghodi M, Tabassi SAS, Jaafaria M-R, Zakavid SR, Momen-Nejad M (2004) Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int J Pharm 280(1–2):125–135
CAS
PubMed
CrossRef
Google Scholar
Taneja S, Ahmad F (1994) Increased thermal stability of proteins in the presence of amino acids. Biochem J 303:147–153
CAS
PubMed Central
PubMed
Google Scholar
Tribble D, Kaminski R, Cantrell J, Nelson M, Porter C, Baqar S, Williams C, Arora R, Saunders J, Ananthakrishnan M, Sanders J, Zaucha G, Turbyfill R, Oaks E (2010) Safety and immunogenicity of a Shigella flexneri 2a Invaplex 50 intranasal vaccine in adult volunteers. Vaccine 28:6076–6085
CAS
PubMed
CrossRef
Google Scholar
Trows S, Scherließ R (2012a) Preparation and characterization of dry powder agarose nano-in-microparticles for nasal vaccination. In: Dalby RN (ed) Respiratory drug delivery 2012, vol 2. Davies Healthcare International, Phoenix, pp. 491–496
Google Scholar
Trows S, Scherließ R (2012b) Stability of antigen loaded dry powder microparticles for nasal vaccination. Paper presented at the 8th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, Istanbul
Google Scholar
Turker S, Onur E, Ozer Y (2004) Nasal route and drug delivery systems. Pharm World Sci 26(3):137–142
PubMed
CrossRef
Google Scholar
van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21:1400–1408
PubMed
CrossRef
Google Scholar
Vodak DT, Dobry DE, Falk R, Dubose D, Kuehl PJ, Chand R, Foubert TR, Steadman BL (2012) Enhancing the immune response to intranasal vaccination with norovirus VLPs—size matters. Paper presented at the DDL 23, Edinburgh
Google Scholar
Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ (2012) Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci 101(1):31–47
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Washington N, Steele RJC, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA (2000) Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm 198:139–146
CAS
PubMed
CrossRef
Google Scholar
Weiler C, Egen M, Trunk M, Langguth P (2010) Force control and powder dispersibility of spray dried particles for inhalation. J Pharm Sci 99(1):303–316
CAS
PubMed
CrossRef
Google Scholar
Westmeier R (2010) Novel formulation concept for nasal deposition of dry powder vaccines. In: Dalby RN (ed) Respiratory drug delivery 2010, vol 2. Davies Healthcare International, Orlando, pp 523–527
Google Scholar
Westmeier R, Steckel H (2008) In-situ fine particle excipient as dispersion modifier for a dry powder inhalation product. Paper presented at the DDL 19, Edinburgh
Google Scholar
White KL, Rades T, Furneaux RH, Tyer PC, Hook S (2006) Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol 58(6):729–737
CAS
PubMed
CrossRef
Google Scholar
Wolfe T, Denton M (2012) Intranasal vaccine delivery—a promising future. OnDrugDelivery:10–12
Google Scholar
Wu Y, Wu S, Hou L, Wei W, Zhou M, Su Z, Wu J, Chen W, Ma G (2012) Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur J Pharm Biopharm 81:486–497
CAS
PubMed
CrossRef
Google Scholar
Yuki Y, Nochi T, Harada N, Katakai Y, Shibata H, Mejima M, Kohda T, Tokuhara D, Kurokawa S, Takahashi Y, Ono F, Kozaki S, Terao K, Tsukada H, Kiyono H (2010) In vivo molecular imaging analysis of a nasal vaccine that induces protective immunity against Botulism in nonhuman primates. J Immunol 185:5436–5443
CAS
PubMed
CrossRef
Google Scholar
Zscherpe J (2009) Nasale Pulverformulierungen zur systemischen Wirkstoffapplikation. Kiel University, Kiel
Google Scholar