Skip to main content

Parenteral Vaccine Administration: Tried and True

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The majority of current and traditional vaccines have been administered by injection into or under the skin. Most of the utilised historic vaccines as well as many of the current vaccines are live or attenuated bacterial or viral preparations, which possess integrated adjuvant properties and their particulate nature enables these vaccines to efficiently drain to secondary lymphatic organs or to activate the innate immune system to carry the vaccine to the next draining lymph node. However, live vaccines are getting rarer and modern vaccines are typically subunit vaccines comprising of synthetic peptides, recombinant proteins or nucleotide-based vaccines such as mRNA and plasmid DNA. While the safety profiles of subunit vaccines are good, their immunogenicity is often poor for which reason new and stronger adjuvants are required. Another possibility to improve the immunogenicity, function and efficacy of such new vaccines is to facilitate targeting to secondary lymphatic organs. Adjuvants and synthetic particles can enable such targeting to some extent, but the use of recombinant bacterial or viral carrier systems is typically more effective. However, a considerate choice of vaccine administration route is also crucial in the development and marked release of new or improved subunit vaccines. In the following, we will discuss the potentials and limitations of various parenteral vaccine administration routes.

Keywords

  • Human Papilloma Virus
  • Subunit Vaccine
  • Secondary Lymphoid Organ
  • Vaccine Administration
  • Rabies Vaccine

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_14
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2

References

  • Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, Huegli RW, Jacob AL, Heberer M, Oertli D, Marti W, Spagnoli GC, Zajac P (2010) Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol Ther 18:651–659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azzi L, El-Alfy M, Martel C, Labrie F (2005) Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. J Invest Dermatol 124:22–27

    CAS  PubMed  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    CAS  PubMed  Google Scholar 

  • Bajenoff M, Granjeaud S, Guerder S (2003) The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J Exp Med 198:715–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin SL, Bertholet S, Kahn M, Zharkikh I, Ireton GC, Vedvick TS, Reed SG, Coler RN (2009) Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27:3063–3071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    CAS  PubMed  Google Scholar 

  • Bansal A, Jackson B, West K, Wang S, Lu S, Kennedy JS, Goepfert PA (2008) Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. J Virol 82:6458–6469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barth RJ Jr, Fisher DA, Wallace PK, Channon JY, Noelle RJ, Gui J, Ernstoff MS (2010) A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res 16:5548–5556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M, Zhang P, Cohen PA, Koski G, Czerniecki BJ (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21:3826–3835

    CAS  PubMed  Google Scholar 

  • Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, Schuler G, Schaft N, Dorrie J (2010) Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 116:2277–2285

    CAS  PubMed  Google Scholar 

  • Bogers WM, Bergmeier LA, Ma J, Oostermeijer H, Wang Y, Kelly CG, Ten Haaft P, Singh M, Heeney JL, Lehner T (2004a) A novel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection. AIDS 18:25–36

    PubMed  Google Scholar 

  • Bogers WM, Bergmeier LA, Oostermeijer H, ten Haaft P, Wang Y, Kelly CG, Singh M, Heeney JL, Lehner T (2004b) CCR5 targeted SIV vaccination strategy preventing or inhibiting SIV infection. Vaccine 22:2974–2984

    CAS  PubMed  Google Scholar 

  • Boutennoune H, Qaqish A, Al-Aghbar M, Abdel-Hafez S, Al-Qaoud K (2012) Induction of T helper 1 response by immunization of BALB/c mice with the gene encoding the second subunit of Echinococcus granulosus antigen B (EgAgB8/2). Parasite 19:183–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG (1999) Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 92:67–75

    CAS  PubMed  Google Scholar 

  • Brown K, Gao W, Alber S, Trichel A, Murphey-Corb M, Watkins SC, Gambotto A, Barratt-Boyes SM (2003) Adenovirus-transduced dendritic cells injected into skin or lymph node prime potent simian immunodeficiency virus-specific T cell immunity in monkeys. J Immunol 171:6875–6882

    CAS  PubMed  Google Scholar 

  • Carcaboso AM, Hernandez RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL (2004) Enhancing immunogenicity and reducing dose of microparticulated synthetic vaccines: single intradermal administration. Pharm Res 21:121–126

    CAS  PubMed  Google Scholar 

  • Carlsson U, Brudin L, Eliasson I, Hansson BG (1996) Hepatitis A vaccination by intracutaneous low dose administration: a less expensive alternative. Scand J Infect Dis 28:435–438

    CAS  PubMed  Google Scholar 

  • Carlsson RM, Claesson BA, Kayhty H, Selstam U, Iwarson S (1999) Studies on a Hib-tetanus toxoid conjugate vaccine: effects of co-administered tetanus toxoid vaccine, of administration route and of combined administration with an inactivated polio vaccine. Vaccine 18:468–478

    CAS  PubMed  Google Scholar 

  • Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK (2004) Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 21:341–347

    CAS  PubMed  Google Scholar 

  • Cavanagh LL, Von Andrian UH (2002) Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 80:448–462

    PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2012) Appendix D: vaccine administration. In: Atkinson W, Wolfe C, Hamborsky J (eds) Epidemiology and prevention of vaccine-preventable diseases. The pink book. Public Health Foundation, Washington, DC

    Google Scholar 

  • Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, Yao Q (2009) Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunother 32:118–128

    PubMed Central  PubMed  Google Scholar 

  • Cumberbatch M, Dearman RJ, Antonopoulos C, Groves RW, Kimber I (2001) Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism. Immunology 102:323–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C, Zhang PJ (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67:1842–1852

    CAS  PubMed  Google Scholar 

  • Davids V, Hanekom WA, Mansoor N, Gamieldien H, Gelderbloem SJ, Hawkridge A, Hussey GD, Hughes EJ, Soler J, Murray RA, Ress SR, Kaplan G (2006) The effect of bacille Calmette-Guerin vaccine strain and route of administration on induced immune responses in vaccinated infants. J Infect Dis 193:531–536

    CAS  PubMed  Google Scholar 

  • De Gregorio E, D’Oro U, Wack A (2009) Immunology of TLR-independent vaccine adjuvants. Curr Opin Immunol 21:339–345

    PubMed  Google Scholar 

  • Delagrave S, Hernandez H, Zhou CH, Hamberger JF, Mundle ST, Catalan J, Baloglu S, Anderson SF, DiNapoli JM, Londono-Hayes P, Parrington M, Almond J, Kleanthous H (2012) Immunogenicity and efficacy of intramuscular replication-defective and subunit vaccines against herpes simplex virus type 2 in the mouse genital model. PLoS One 7(10):e46714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dretzke J, Meadows A, Novielli N, Huissoon A, Fry-Smith A, Meads C (2013) Subcutaneous and sublingual immunotherapy for seasonal allergic rhinitis: a systematic review and indirect comparison. J Allergy Clin Immunol 131:1361–1366

    PubMed  Google Scholar 

  • Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    CAS  PubMed  Google Scholar 

  • Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345

    CAS  PubMed  Google Scholar 

  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    CAS  PubMed  Google Scholar 

  • Eo SK, Gierynska M, Kamar AA, Rouse BT (2001) Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J Immunol 166:5473–5479

    CAS  PubMed  Google Scholar 

  • Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334:475–480

    CAS  PubMed  Google Scholar 

  • Everson MP, McDuffie DS, Lemak DG, Koopman WJ, McGhee JR, Beagley KW (1996) Dendritic cells from different tissues induce production of different T cell cytokine profiles. J Leukoc Biol 59:494–498

    CAS  PubMed  Google Scholar 

  • Fadul CE, Fisher JL, Hampton TH, Lallana EC, Li Z, Gui J, Szczepiorkowski ZM, Tosteson TD, Rhodes CH, Wishart HA, Lewis LD, Ernstoff MS (2011) Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 34:382–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finerty S, Stokes CR, Gruffydd-Jones TJ, Hillman TJ, Barr FJ, Harbour DA (2001) Targeted lymph node immunization can protect cats from a mucosal challenge with feline immunodeficiency virus. Vaccine 20:49–58

    CAS  PubMed  Google Scholar 

  • Fisch A, Cadilhac P, Vidor E, Prazuck T, Dublanchet A, Lafaix C (1996) Immunogenicity and safety of a new inactivated hepatitis A vaccine: a clinical trial with comparison of administration route. Vaccine 14:1132–1136

    CAS  PubMed  Google Scholar 

  • Fong L, Brockstedt D, Benike C, Wu L, Engleman EG (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259

    CAS  PubMed  Google Scholar 

  • Forster R, Braun A, Worbs T (2012) Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol 33:271–280

    PubMed  Google Scholar 

  • Frey JR, Wenk P (1957) Experimental studies on the pathogenesis of contact eczema in the guinea-pig. Int Arch Allergy Appl Immunol 11:81–100

    CAS  PubMed  Google Scholar 

  • Frosner G, Steffen R, Herzog C (2009) Virosomal hepatitis a vaccine: comparing intradermal and subcutaneous with intramuscular administration. J Travel Med 16:413–419

    PubMed  Google Scholar 

  • Goetsch L, Plotnicky-Gilquin H, Champion T, Beck A, Corvaia N, Stahl S, Bonnefoy JY, Nguyen TN, Power UF (2000) Influence of administration dose and route on the immunogenicity and protective efficacy of BBG2Na, a recombinant respiratory syncytial virus subunit vaccine candidate. Vaccine 18:2735–2742

    CAS  PubMed  Google Scholar 

  • Goetsch L, Plotnicky-Gilquin H, Aubry JP, De-Lys P, Haeuw JF, Bonnefoy JY, Nguyen NT, Corvaia N, Velin D (2001) BBG2Na an RSV subunit vaccine candidate intramuscularly injected to human confers protection against viral challenge after nasal immunization in mice. Vaccine 19:4036–4042

    CAS  PubMed  Google Scholar 

  • Gramzinski RA, Millan CL, Obaldia N, Hoffman SL, Davis HL (1998) Immune response to a hepatitis B DNA vaccine in Aotus monkeys: a comparison of vaccine formulation, route, and method of administration. Mol Med 4:109–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groswasser J, Kahn A, Bouche B, Hanquinet S, Perlmuter N, Hessel L (1997) Needle length and injection technique for efficient intramuscular vaccine delivery in infants and children evaluated through an ultrasonographic determination of subcutaneous and muscle layer thickness. Pediatrics 100:400–403

    CAS  PubMed  Google Scholar 

  • Hale-White W (1923) The Jenner celebrations. Br Med J 1:203–206

    Google Scholar 

  • Hartikka J, Bozoukova V, Morrow J, Rusalov D, Shlapobersky M, Wei Q, Boutsaboualoy S, Ye M, Wloch MK, Doukas J, Sullivan S, Rolland A, Smith LR (2012) Preclinical evaluation of the immunogenicity and safety of plasmid DNA-based prophylactic vaccines for human cytomegalovirus. Hum Vaccin Immunother 8:1595–1606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinzerling L, Basch V, Maloy K, Johansen P, Senti G, Wuthrich B, Storni T, Kundig TM (2006) Critical role for DNA vaccination frequency in induction of antigen-specific cytotoxic responses. Vaccine 24:1389–1394

    CAS  PubMed  Google Scholar 

  • Hickling JK, Jones KR, Friede M, Zehrung D, Chen D, Kristensen D (2011) Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Organ 89:221–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homey B, Steinhoff M, Ruzicka T, Leung DY (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118:178–189

    CAS  PubMed  Google Scholar 

  • Huppa JB, Gleimer M, Sumen C, Davis MM (2003) Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol 4:749–755

    CAS  PubMed  Google Scholar 

  • Hylander T, Latif L, Petersson-Westin U, Cardell LO (2013) Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis. J Allergy Clin Immun 131:412–420

    CAS  PubMed  Google Scholar 

  • Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4:733–739

    CAS  PubMed  Google Scholar 

  • Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, Whitney JA, Connolly J, Banchereau J, Mellman I (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27:610–624

    PubMed Central  PubMed  Google Scholar 

  • Johansen P, Kündig TM (2014). Intralymphatic immunotherapy and vaccination in mice. J Vis Exp (84):e51031

    Google Scholar 

  • Johansen P, Haffner AC, Koch F, Zepter K, Erdmann I, Maloy K, Simard JJ, Storni T, Senti G, Bot A, Wuthrich B, Kundig TM (2005) Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur J Immunol 35:568–574

    CAS  PubMed  Google Scholar 

  • Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith KA, Manolova V, Lang KS, Senti G, Mullhaupt B, Gerlach T, Speck RF, Bot A, Kundig TM (2008) Antigen kinetics determines immune reactivity. Proc Natl Acad Sci U S A 105:5189–5194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen P, Mohanan D, Martinez-Gomez JM, Kundig TM, Gander B (2010) Lympho-geographical concepts in vaccine delivery. J Control Release 148:56–62

    CAS  PubMed  Google Scholar 

  • Johansen P, von Moos S, Mohanan D, Kundig TM, Senti G (2012) New routes for allergen immunotherapy. Hum Vaccin Immunother 8:1525–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juillard GJ, Boyer PJ (1977) Intralymphatic immunization: current status. Eur J Cancer 13:439–440

    CAS  PubMed  Google Scholar 

  • Juillard GJ, Boyer PJ, Snow HD (1976) Intralymphatic infusion of autochthonous tumor cells in canine lymphoma. Int J Radiat Oncol Biol Phys 1:497–503

    CAS  PubMed  Google Scholar 

  • Juillard GJ, Boyer PJ, Yamashiro CH, Snow HD, Weisenburger TH, McCarthy T, Miller RJ (1977) Regional intralymphatic infusion (ILI) of irradiated tumor cells with evidence of distant effects. Cancer 39:126–130

    CAS  PubMed  Google Scholar 

  • Juillard GJ, Boyer PJ, Yamashiro CH (1978) A phase I study of active specific intralymphatic immunotherapy (ASILI). Cancer 41:2215–2225

    CAS  PubMed  Google Scholar 

  • Juillard GJ, Boyer PJ, Niewisch H, Hom M (1979) Distribution and consequences of cell suspensions following intralymphatic infusion. Bull Cancer 66:217–228

    CAS  PubMed  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, Ahmed T, Amin A, Arseneau J, Barth N, Bernstein G, Bracken B, Burch P, Caggiano V, Chin J, Chodak G, Chu F, Corman J, Curti B, Dawson N, Deeken JF, Dubernet T, Fishman M, Flanigan R, Gailani F, Garbo L, Gardner T, Gelmann E, George D, Godfrey T, Gomella L, Guerra M, Hall S, Hanson J, Israeli R, Jancis E, Jewett MAS, Kassabian V, Katz J, Klotz L, Koeneman K, Koh H, Kratzke R, Lance R, Lech J, Leichman L, Lemon R, Liang J, Libertino J, Lilly M, Malik I, Martin SE, McCaffrey J, McLeod D, McNeel D, Miles B, Murdock M, Nabhan C, Nemunaitis J, Notter D, Pantuck A, Perrotte P, Pessis D, Petrylak D, Polikoff J, Pommerville P, Ramanathan S, Rarick M, Richards J, Rifkin R, Rohatgi N, Rosenbluth R, Santucci R, Sayegh A, Seigne J, Shapira I, Shedhadeh N, Shepherd D, Sridhar S, Stephenson R, Teigland C, Thaker N, Vacirca J, Villa L, Vogelzang N, Wertheim M, Wolff JH, Wurzel R, Yang C, Young J, Investigators IS (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    CAS  PubMed  Google Scholar 

  • Kawabata S, Miller CJ, Lehner T, Fujihashi K, Kubota M, McGhee JR, Imaoka K, Hioi T, Kiyono H (1998) Induction of Th2 cytokine expression for p27-specific IgA B-cell responses after targeted lymph node immunization with simian immunodeficiency virus in rhesus macaques. J Infect Dis 177:26–33

    CAS  PubMed  Google Scholar 

  • Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM (2004) Dose sparing with intradermal injection of influenza vaccine. N Engl J Med 351:2295–2301

    CAS  PubMed  Google Scholar 

  • Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR (2012) Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimber I, Cumberbatch M, Dearman RJ, Bhushan M, Griffiths CE (2000) Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br J Dermatol 142:401–412

    CAS  PubMed  Google Scholar 

  • Kirkwood JM, Ariyan S, Mitchell M, Nordlund JJ, Lerner A, Papac RJ, Forget B, Knobf M (1980) Intralymphatic (Il) and local-regional (Lr) adjuvant immunotherapy with mercaptoethanol-extracted residue (Mer) of Bacille Calmette-Guerin (Bcg) in high-risk melanoma (M). Proc Am Assoc Canc Res 21:240–240

    Google Scholar 

  • Kirkwood JM, Ariyan S, Nordlund JJ, Forget BM (1982) Granulomatous lymphangitis—a complication of intralymphatic immunotherapy with methanol extraction residue of Bcg (Mer). Cancer 50:1299–1303

    CAS  PubMed  Google Scholar 

  • Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    CAS  PubMed  Google Scholar 

  • Klavinskis LS, Bergmeier LA, Gao L, Mitchell E, Ward RG, Layton G, Brookes R, Meyers NJ, Lehner T (1996) Mucosal or targeted lymph node immunization of macaques with a particulate SIVp27 protein elicits virus-specific CTL in the genito-rectal mucosa and draining lymph nodes. J Immunol 157:2521–2527

    CAS  PubMed  Google Scholar 

  • Koblin BA, Casapia M, Morgan C, Qin L, Wang ZM, Defawe OD, Baden L, Goepfert P, Tomaras GD, Montefiori DC, McElrath MJ, Saavedra L, Lau CY, Graham BS, Network NHVT (2011) Safety and immunogenicity of an HIV adenoviral vector boost after DNA plasmid vaccine prime by route of administration: a randomized clinical trial. PLoS One 6:e24517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koopman G, Bogers WM, van Gils M, Koornstra W, Barnett S, Morein B, Lehner T, Heeney JL (2007) Comparison of intranasal with targeted lymph node immunization using PR8-Flu ISCOM adjuvanted HIV antigens in macaques. J Med Virol 79:474–482

    CAS  PubMed  Google Scholar 

  • Koutsonanos DG, Vassilieva EV, Stavropoulou A, Zarnitsyn VG, Esser ES, Taherbhai MT, Prausnitz MR, Compans RW, Skountzou I (2012) Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep 2:357

    PubMed Central  PubMed  Google Scholar 

  • Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Tureci O, Sahin U (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    CAS  PubMed  Google Scholar 

  • Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Husemann Y, Koslowski M, Huber C, Tureci O, Sahin U (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132–6142

    CAS  PubMed  Google Scholar 

  • Kretz-Rommel A, Qin F, Dakappagari N, Torensma R, Faas S, Wu D, Bowdish KS (2007) In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J Immunother 30:715–726

    CAS  PubMed  Google Scholar 

  • Kündig TM, Bachmann MF, DiPaolo C, Simard JJ, Battegay M, Lother H, Gessner A, Kuhlcke K, Ohashi PS, Hengartner H et al (1995) Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 268:1343–1347

    PubMed  Google Scholar 

  • Kündig TM, Bot A, Senti G (2012) Intralymphatic vaccination. In: Thalhamer J, Weiss R, Scheiblhofer S (eds) Gene vaccines. Springer, Wien, pp 205–222

    Google Scholar 

  • Lacour JP, Caldani C, Thyss A, Schneider M, Ortonne JP (1992) Vitiligo-like depigmentation and morpheas after specific intralymphatic immunotherapy for malignant-melanoma. Dermatology 184:283–285

    CAS  PubMed  Google Scholar 

  • Lai MD, Yen MC, Lin CM, Tu CF, Wang CC, Lin PS, Yang HJ, Lin CC (2009) The effects of DNA formulation and administration route on cancer therapeutic efficacy with xenogenic EGFR DNA vaccine in a lung cancer animal model. Genet Vaccines Ther 7:2

    PubMed Central  PubMed  Google Scholar 

  • Lambert PH, Laurent PE (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26:3197–3208

    CAS  PubMed  Google Scholar 

  • Lee HK, Iwasaki A (2007) Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol 19:48–55

    CAS  PubMed  Google Scholar 

  • Lehner T, Bergmeier LA, Tao L, Panagiotidi C, Klavinskis LS, Hussain L, Ward RG, Meyers N, Adams SE, Gearing AJ et al (1994) Targeted lymph node immunization with simian immunodeficiency virus p27 antigen to elicit genital, rectal, and urinary immune responses in nonhuman primates. J Immunol 153:1858–1868

    CAS  PubMed  Google Scholar 

  • Lehner T, Wang Y, Cranage M, Bergmeier LA, Mitchell E, Tao L, Hall G, Dennis M, Cook N, Jones I, Doyle C (1998) Protective mucosal immunity elicited by targeted lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Dev Biol Stand 92:225–235

    CAS  PubMed  Google Scholar 

  • Lehner T, Mitchell E, Bergmeier L, Singh M, Spallek R, Cranage M, Hall G, Dennis M, Villinger F, Wang Y (2000) The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol 30:2245–2256

    CAS  PubMed  Google Scholar 

  • Lesimple T, Moisan A, Carsin A, Ollivier I, Mousseau M, Meunier B, Leberre C, Collet B, Quillien V, Drenou B, Lefeuvre-Plesse C, Chevrant-Breton J, Toujas L (2003) Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects. Cancer Immunol Immunother 52:438–444

    CAS  PubMed  Google Scholar 

  • Lesimple T, Neidhard EM, Vignard V, Lefeuvre C, Adamski H, Labarriere N, Carsin A, Monnier D, Collet B, Clapisson G, Birebent B, Philip I, Toujas L, Chokri M, Quillien V (2006) Immunologic and clinical effects of injecting mature peptide-loaded dendritic cells by intralymphatic and intranodal routes in metastatic melanoma patients. Clin Cancer Res 12:7380–7388

    CAS  PubMed  Google Scholar 

  • Lesterhuis WJ, de Vries IJ, Schreibelt G, Lambeck AJ, Aarntzen EH, Jacobs JF, Scharenborg NM, van de Rakt MW, de Boer AJ, Croockewit S, van Rossum MM, Mus R, Oyen WJ, Boerman OC, Lucas S, Adema GJ, Punt CJ, Figdor CG (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17:5725–5735

    CAS  PubMed  Google Scholar 

  • Lobaina Y, Trujillo H, Garcia D, Gambe A, Chacon Y, Blanco A, Aguilar JC (2010) The effect of the parenteral route of administration on the immune response to simultaneous nasal and parenteral immunizations using a new HBV therapeutic vaccine candidate. Viral Immunol 23:521–529

    CAS  PubMed  Google Scholar 

  • Lu X, Kiyono H, Lu D, Kawabata S, Torten J, Srinivasan S, Dailey PJ, McGhee JR, Lehner T, Miller CJ (1998) Targeted lymph-node immunization with whole inactivated simian immunodeficiency virus (SIV) or envelope and core subunit antigen vaccines does not reliably protect rhesus macaques from vaginal challenge with SIVmac251. AIDS 12:1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malowany JI, McCormick S, Santosuosso M, Zhang X, Aoki N, Ngai P, Wang J, Leitch J, Bramson J, Wan Y, Xing Z (2006) Development of cell-based tuberculosis vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Mol Ther 13:766–775

    CAS  PubMed  Google Scholar 

  • Maloy KJ, Erdmann I, Basch V, Sierro S, Kramps TA, Zinkernagel RM, Oehen S, Kundig TM (2001) Intralymphatic immunization enhances DNA vaccination. Proc Natl Acad Sci U S A 98:3299–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    CAS  PubMed  Google Scholar 

  • Mark A, Carlsson RM, Granstrom M (1999) Subcutaneous versus intramuscular injection for booster DT vaccination of adolescents. Vaccine 17:2067–2072

    CAS  PubMed  Google Scholar 

  • Martinez-Gomez JM, Johansen P, Erdmann I, Senti G, Crameri R, Kundig TM (2009) Intralymphatic injections as a new administration route for allergen-specific immunotherapy. Int Arch Allergy Immunol 150:59–65

    CAS  PubMed  Google Scholar 

  • MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohanan D, Slutter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kundig TM, Gander B, Johansen P (2010) Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147:342–349

    CAS  PubMed  Google Scholar 

  • Mons B (1991) A live attenuated malaria vaccine: science or fiction? Acta Leiden 60:181–190

    CAS  PubMed  Google Scholar 

  • Morel PA, Falkner D, Plowey J, Larregina AT, Falo LD (2004) DNA immunisation: altering the cellular localisation of expressed protein and the immunisation route allows manipulation of the immune response. Vaccine 22:447–456

    CAS  PubMed  Google Scholar 

  • Moy PM, Golub SH, Calkins E, Morton DL (1985) Effects of intralymphatic immunotherapy on natural-killer activity in malignant-melanoma patients. J Surg Oncol 29:112–117

    CAS  PubMed  Google Scholar 

  • Nilsson BO, Svalander PC, Larsson A (1987) Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to Sepharose beads or nitrocellulose paper strips. J Immunol Methods 99:67–75

    CAS  PubMed  Google Scholar 

  • Nnalue NA, Stocker BA (1989) Vaccination route, infectivity and thioglycollate broth administration: effects on live vaccine efficacy of auxotrophic derivatives of Salmonella choleraesuis. Microb Pathog 7:299–310

    CAS  PubMed  Google Scholar 

  • Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064

    CAS  PubMed  Google Scholar 

  • Okada N, Tsujino M, Hagiwara Y, Tada A, Tamura Y, Mori K, Saito T, Nakagawa S, Mayumi T, Fujita T, Yamamoto A (2001) Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 84:1564–1570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Opriessnig T, Gomes-Neto JC, Hemann M, Shen HG, Beach NM, Huang YW, Halbur PG, Meng XJ (2011) An experimental live chimeric porcine circovirus 1-2a vaccine decreases porcine circovirus 2b viremia when administered intramuscularly or orally in a porcine circovirus 2b and porcine reproductive and respiratory syndrome virus dual-challenge model. Microbiol Immunol 55:863–873

    CAS  PubMed  Google Scholar 

  • Ouwehand K, Santegoets SJ, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S (2008) CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur J Immunol 38:3050–3059

    CAS  PubMed  Google Scholar 

  • Pape KA, Catron DM, Itano AA, Jenkins MK (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26:491–502

    CAS  PubMed  Google Scholar 

  • Pearton M, Kang SM, Song JM, Anstey AV, Ivory M, Compans RW, Birchall JC (2010a) Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines. PLoS One 5:e12410

    PubMed Central  PubMed  Google Scholar 

  • Pearton M, Kang SM, Song JM, Kim YC, Quan FS, Anstey A, Ivory M, Prausnitz MR, Compans RW, Birchall JC (2010b) Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 28:6104–6113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pittman PR (2002) Aluminum-containing vaccine associated adverse events: role of route of administration and gender. Vaccine 20(Suppl 3):S48–S50

    CAS  PubMed  Google Scholar 

  • Pittman PR, Kim-Ahn G, Pifat DY, Coonan K, Gibbs P, Little S, Pace-Templeton JG, Myers R, Parker GW, Friedlander AM (2002) Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine 20:1412–1420

    CAS  PubMed  Google Scholar 

  • Poland GA, Borrud A, Jacobson RM, McDermott K, Wollan PC, Brakke D, Charboneau JW (1997) Determination of deltoid fat pad thickness. Implications for needle length in adult immunization. JAMA 277:1709–1711

    CAS  PubMed  Google Scholar 

  • Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628

    CAS  PubMed  Google Scholar 

  • Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168:4361–4371

    CAS  PubMed  Google Scholar 

  • Reynolds MG, Yorita KL, Kuehnert MJ, Davidson WB, Huhn GD, Holman RC, Damon IK (2006) Clinical manifestations of human monkeypox influenced by route of infection. J Infect Dis 194:773–780

    PubMed  Google Scholar 

  • Ribas A, Weber JS, Chmielowski B, Comin-Anduix B, Lu D, Douek M, Ragavendra N, Raman S, Seja E, Rosario D, Miles S, Diamond DC, Qiu Z, Obrocea M, Bot A (2011) Intra-lymph node prime-boost vaccination against Melan A and tyrosinase for the treatment of metastatic melanoma: results of a phase 1 clinical trial. Clin Cancer Res 17:2987–2996

    CAS  PubMed  Google Scholar 

  • Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, Spaarman L, de Mast Q, Roeffen W, Snounou G, Renia L, van der Ven A, Hermsen CC, Sauerwein R (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361:468–477

    CAS  PubMed  Google Scholar 

  • Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN, Wiersma J, Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M, van der Ven AJ, Luty AJ, Hermsen CC, Sauerwein RW (2011) Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377:1770–1776

    CAS  PubMed  Google Scholar 

  • Roozendaal R, Mebius RE, Kraal G (2008) The conduit system of the lymph node. Int Immunol 20:1483–1487

    CAS  PubMed  Google Scholar 

  • Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, von Andrian UH, Carroll MC (2009) Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roukens AH, Gelinck LB, Visser LG (2012) Intradermal vaccination to protect against yellow fever and influenza. Curr Top Microbiol Immunol 351:159–179

    CAS  PubMed  Google Scholar 

  • Ruben FL, Froeschle JE, Meschievitz C, Chen K, George J, Reeves-Hoche MK, Pietrobon P, Bybel M, Livingood WC, Woodhouse L (2001) Choosing a route of administration for quadrivalent meningococcal polysaccharide vaccine: intramuscular versus subcutaneous. Clin Infect Dis 32:170–172

    CAS  PubMed  Google Scholar 

  • Rupec RA, Boneberger S, Ruzicka T (2010) What is really in control of skin immunity: lymphocytes, dendritic cells, or keratinocytes? Facts and controversies. Clin Dermatol 28:62–66

    PubMed  Google Scholar 

  • Samina I, Zakay-Rones Z, Weller JI, Peleg BA (1998) Host factors affecting the homologous and heterologous immune response of cattle to FMDV: genetic background, age, virus strains and route of administration. Vaccine 16:335–339

    CAS  PubMed  Google Scholar 

  • Schroder JM, Reich K, Kabashima K, Liu FT, Romani N, Metz M, Kerstan A, Lee PH, Loser K, Schon MP, Maurer M, Stoitzner P, Beissert S, Tokura Y, Gallo RL (2006) Who is really in control of skin immunity under physiological circumstances—lymphocytes, dendritic cells or keratinocytes? Exp Dermatol 15:913–929

    CAS  PubMed  Google Scholar 

  • Schwaab T, Schwarzer A, Wolf B, Crocenzi TS, Seigne JD, Crosby NA, Cole BF, Fisher JL, Uhlenhake JC, Mellinger D, Foster C, Szczepiorkowski ZM, Webber SM, Schned AR, Harris RD, Barth RJ Jr, Heaney JA, Noelle RJ, Ernstoff MS (2009) Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with Aldesleukin (Interleukin 2) and IFN-{alpha}2a therapy in metastatic renal cell carcinoma patients. Clin Cancer Res 15:4986–4992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Senti G, Prinz Vavricka BM, Erdmann I, Diaz MI, Markus R, McCormack SJ, Simard JJ, Wuthrich B, Crameri R, Graf N, Johansen P, Kundig TM (2008) Intralymphatic allergen administration renders specific immunotherapy faster and safer: a randomized controlled trial. Proc Natl Acad Sci U S A 105:17908–17912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Senti G, Johansen P, Kundig TM (2009) Intralymphatic immunotherapy. Curr Opin Allergy Clin Immunol 9:537–543

    PubMed  Google Scholar 

  • Senti G, Johansen P, Kundig TM (2011) Intralymphatic immunotherapy: from the rationale to human applications. Curr Top Microbiol Immunol 352:71–84

    CAS  PubMed  Google Scholar 

  • Senti G, Crameri R, Kuster D, Johansen P, Martinez-Gomez JM, Graf N, Steiner M, Hothorn LA, Gronlund H, Tivig C, Zaleska A, Soyer O, van Hage M, Akdis CA, Akdis M, Rose H, Kundig TM (2012) Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J Allergy Clin Immunol 129:1290–1296

    CAS  PubMed  Google Scholar 

  • Shaw FE Jr, Guess HA, Roets JM, Mohr FE, Coleman PJ, Mandel EJ, Roehm RR Jr, Talley WS, Hadler SC (1989) Effect of anatomic injection site, age and smoking on the immune response to hepatitis B vaccination. Vaccine 7:425–430

    PubMed  Google Scholar 

  • Sigel MB, Sinha YN, VanderLaan WP (1983) Production of antibodies by inoculation into lymph nodes. Methods Enzymol 93:3–12

    CAS  PubMed  Google Scholar 

  • Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29

    CAS  PubMed  Google Scholar 

  • Slutter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 154:123–130

    PubMed  Google Scholar 

  • Spaner DE, Astsaturov I, Vogel T, Petrella T, Elias I, Burdett-Radoux S, Verma S, Iscoe N, Hamilton P, Berinstein NL (2006) Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Cancer 106:890–899

    CAS  PubMed  Google Scholar 

  • Stertman L, Strindelius L, Sjoholm I (2004) Starch microparticles as an adjuvant in immunisation: effect of route of administration on the immune response in mice. Vaccine 22:2863–2872

    CAS  PubMed  Google Scholar 

  • Stutte S, Quast T, Gerbitzki N, Savinko T, Novak N, Reifenberger J, Homey B, Kolanus W, Alenius H, Forster I (2010) Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells. Proc Natl Acad Sci U S A 107:8736–8741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361:82–85

    CAS  PubMed  Google Scholar 

  • Tenbusch M, Ignatius R, Nchinda G, Trumpfheller C, Salazar AM, Topfer K, Sauermann U, Wagner R, Hannaman D, Tenner-Racz K, Racz P, Stahl-Hennig C, Uberla K (2012) Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques. PLoS One 7:e39038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomita GM, Nickerson SC, Owens WE, Wren B (1998) Influence of route of vaccine administration against experimental intramammary infection caused by Escherichia coli. J Dairy Sci 81:2159–2164

    CAS  PubMed  Google Scholar 

  • Trevejo JM, Marino MW, Philpott N, Josien R, Richards EC, Elkon KB, Falck-Pedersen E (2001) TNF-alpha -dependent maturation of local dendritic cells is critical for activating the adaptive immune response to virus infection. Proc Natl Acad Sci U S A 98:12162–12167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tu CF, Lin CC, Chen MC, Ko TM, Lin CM, Wang YC, Lai MD (2007) Autologous neu DNA vaccine can be as effective as xenogenic neu DNA vaccine by altering administration route. Vaccine 25:719–728

    CAS  PubMed  Google Scholar 

  • Van Damme P, Arnou R, Kafeja F, Fiquet A, Richard P, Thomas S, Meghlaoui G, Samson SI, Ledesma E (2010) Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study. BMC Infect Dis 10:134

    PubMed Central  PubMed  Google Scholar 

  • Villablanca EJ, Mora JR (2008) A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 38:2975–2980

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878

    Google Scholar 

  • Waeckerle-Men Y, Bruffaerts N, Liang Y, Jurion F, Sander P, Kundig TM, Huygen K, Johansen P (2013a) Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Vaccine 31:1057–1064

    CAS  PubMed  Google Scholar 

  • Waeckerle-Men Y, Mauracher A, Hakerud M, Mohanan D, Kundig TM, Hogset A, Johansen P (2013b) Photochemical targeting of antigens to the cytosol for stimulation of MHC class-I-restricted T-cell responses. Eur J Pharm Biopharm 85:34–41

    Google Scholar 

  • Wang B, Amerio P, Sauder DN (1999) Role of cytokines in epidermal Langerhans cell migration. J Leukoc Biol 66:33–39

    CAS  PubMed  Google Scholar 

  • Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, Miles S, Liu X, Obrocea M, Qiu Z, Bot A (2008) Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 31:215–223

    CAS  PubMed  Google Scholar 

  • Weber JS, Vogelzang NJ, Ernstoff MS, Goodman OB, Cranmer LD, Marshall JL, Miles S, Rosario D, Diamond DC, Qiu Z, Obrocea M, Bot A (2011) A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 34:556–567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams TW, Yanagimoto JM, Mazumder A, Wiseman CL (1992) Interleukin-2 increases the antibody-response in patients receiving autologous intralymphatic tumor-cell vaccine immunotherapy. Mol Biother 4:66–69

    CAS  PubMed  Google Scholar 

  • Windom HH, Lockey RF (2008) An update on the safety of specific immunotherapy. Curr Opin Allergy Clin Immunol 8:571–576

    PubMed  Google Scholar 

  • Wiseman C, Rao VS, Bakke A, Kerman R, Bouzaglou A, Presant C, Mckenna RJ, Smith JD, Sakulsky SB (1986) Increased T-helper lymphocytes following active specific intralymphatic immunotherapy of cancer. J Biol Response Mod 5:490–497

    CAS  PubMed  Google Scholar 

  • Wiseman CL, Rao VS, Kennedy PS, Presant CA, Smith JD, Mckenna RJ (1989) Clinical-responses with active specific intralymphatic immunotherapy for cancer—a phase I-Ii trial. West J Med 151:283–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolums AR, Berghaus RD, Berghaus LJ, Ellis RW, Pence ME, Saliki JT, Hurley KA, Galland KL, Burdett WW, Nordstrom ST, Hurley DJ (2013) Effect of calf age and administration route of initial multivalent modified-live virus vaccine on humoral and cell-mediated immune responses following subsequent administration of a booster vaccination at weaning in beef calves. Am J Vet Res 74:343–354

    CAS  PubMed  Google Scholar 

  • World Health Organization (2000) Intradermal application of rabies vaccine. Report of a WHO Consultation. Communicable Disease Surveillance and Control WHO/CDS/CSR/APH/2000.5

    Google Scholar 

  • Xu H, Guan H, Zu G, Bullard D, Hanson J, Slater M, Elmets CA (2001) The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur J Immunol 31:3085–3093

    CAS  PubMed  Google Scholar 

  • Yi Q, Szmania S, Freeman J, Qian J, Rosen NA, Viswamitra S, Cottler-Fox M, Barlogie B, Tricot G, van Rhee F (2010) Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 150:554–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida A, Nagata T, Uchijima M, Higashi T, Koide Y (2000) Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses. Vaccine 18:1725–1729

    CAS  PubMed  Google Scholar 

  • Zitvogel L (2002) Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195:F9–F14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuckerman JN (2000) The importance of injecting vaccines into muscle. Different patients need different needle sizes. BMJ 321:1237–1238

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Johansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johansen, P., Kündig, T.M. (2015). Parenteral Vaccine Administration: Tried and True. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_14

Download citation